Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-04-30T17:13:38.429Z Has data issue: false hasContentIssue false

Vortex ring formation process in starting jets with uniform background co- and counter-flow

Published online by Cambridge University Press:  07 August 2023

Jianwei Zhu
Affiliation:
Key Laboratory of Dynamics and Control of Flight Vehicle, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China
Guoqing Zhang*
Affiliation:
Key Laboratory of Dynamics and Control of Flight Vehicle, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China
Lei Gao
Affiliation:
School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, PR China
S.C.M. Yu
Affiliation:
Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, PR China
*
Email address for correspondence: zhanggq@bit.edu.cn

Abstract

The formation process of the leading vortex ring in starting jets with uniform background co- and counter-flow has been studied numerically for $-0.5\leq R_v\leq 0.5$, where $R_v$ is the ratio of background velocity to jet velocity. For the cases with background counter-flow, the normal formation process of the leading vortex ring would be destroyed when $R_v<-0.4$, i.e. the trailing jet would overtake the leading vortex ring through the centre, a phenomenon reminiscent of vortex leapfrogging. As the velocity ratio $R_v$ increases, the formation number $F_{t^*}$ decreases from $9.6$ at $R_v=-0.4$ to $1.92$ at $R_v=0.5$. An analytical model based on the kinematic criterion has been developed so as to describe the relationship between the formation number $F_{t^*}$ and velocity ratio $R_v$. A linear relationship between the vortex core parameter and stroke ratio of starting jet ($\varepsilon \sim k_1L/D$) for the Norbury vortex ring has been established and used effectively to close the model. For co-flow with $0< R_v\leq 0.5$, the results from this model are consistent with the present numerical simulation and the experiments by Krueger et al. (J. Fluid Mech., vol. 556, 2006, pp. 147–166). For counter-flow, two different equations are proposed for $-0.4\leq R_v\leq -0.2$ and $-0.2< R_v<0$, respectively.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ai, J.J., Yu, S.C.M., Law, A.W.K. & Chua, L.P. 2005 Vortex dynamics in starting square water jets. Phys. Fluids 17 (1), 014106.CrossRefGoogle Scholar
Anderson, E.J. & Demont, M.E. 2000 The mechanics of locomotion in the squid Loligo pealei: locomotory function and unsteady hydrodynamics of the jet and intramantle pressure. J. Expl Biol. 203 (18), 28512863.CrossRefGoogle ScholarPubMed
Anderson, E.J. & Grosenbaugh, M.A. 2005 Jet flow in steadily swimming adult squid. J. Expl Biol. 208 (6), 11251146.CrossRefGoogle ScholarPubMed
Bi, X. & Zhu, Q. 2019 Fluid-structure investigation of a squid-inspired swimmer. Phys. Fluids 31 (10), 101901.CrossRefGoogle Scholar
Cheng, J.Y. & Demont, M.E. 1996 Jet-propelled swimming in scallops: swimming mechanics and ontogenic scaling. Can. J. Zool. 74 (9), 17341748.CrossRefGoogle Scholar
Dabiri, J.O. 2009 Optimal vortex formation as a unifying principle in biological propulsion. Annu. Rev. Fluid Mech. 41, 1733.CrossRefGoogle Scholar
Dabiri, J.O., Colin, S.P., Costello, J.H. & Gharib, M. 2005 Flow patterns generated by oblate medusan jellyfish: field measurements and laboratory analyses. J. Expl Biol. 208 (7), 12571265.CrossRefGoogle ScholarPubMed
Dabiri, J.O. & Gharib, M. 2003 Sensitivity analysis of kinematic approximations in dynamic medusan swimming models. J. Expl Biol. 206 (20), 36753680.CrossRefGoogle ScholarPubMed
Dabiri, J.O. & Gharib, M. 2004 a Delay of vortex ring pinchoff by an imposed bulk counterflow. Phys. Fluids 16 (4), L28L30.CrossRefGoogle Scholar
Dabiri, J.O. & Gharib, M. 2004 b Fluid entrainment by isolated vortex rings. J. Fluid Mech. 511, 311331.CrossRefGoogle Scholar
Dabiri, J.O. & Gharib, M. 2005 Starting flow through nozzles with temporally variable exit diameter. J. Fluid Mech. 538, 111136.CrossRefGoogle Scholar
Didden, N. 1979 On the formation of vortex rings: rolling-up and production of circulation. Z. Angew. Math. Phys. 30 (1), 101116.CrossRefGoogle Scholar
Fraenkel, L.E. 1972 Examples of steady vortex rings of small cross-section in an ideal fluid. J. Fluid Mech. 51 (1), 119135.CrossRefGoogle Scholar
Gao, L. 2011 The pinch-off process of the leading vortex ring in a starting jet. PhD thesis, School of Mechanical and Aerospace Engineering, Nanyang Technological University Singapore.Google Scholar
Gao, L., Wang, X., Yu, S.C.M. & Chyu, M.K. 2020 Development of the impulse and thrust for laminar starting jets with finite discharged volume. J. Fluid Mech. 902, A27.CrossRefGoogle Scholar
Gao, L. & Yu, S.C.M. 2010 A model for the pinch-off process of the leading vortex ring in a starting jet. J. Fluid Mech. 656, 205222.CrossRefGoogle Scholar
Gao, L. & Yu, S.C.M. 2012 Development of the trailing shear layer in a starting jet during pinch-off. J. Fluid Mech. 700, 382405.CrossRefGoogle Scholar
Gao, L., Yu, S.C.M., Ai, J.J. & Law, A.W.K. 2008 Circulation and energy of the leading vortex ring in a gravity-driven starting jet. Phys. Fluids 20 (9), 093604.CrossRefGoogle Scholar
Gharib, M., Rambod, E. & Shariff, K. 1998 A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121140.CrossRefGoogle Scholar
Glezer, A. 1988 The formation of vortex rings. Phys. Fluids 31 (12), 35323542.CrossRefGoogle Scholar
de Guyon, G. & Mulleners, K. 2022 Estimating the non-dimensional energy of vortex rings by modelling their roll-up. J. Fluid Mech. 940, R2.CrossRefGoogle Scholar
Hill, M.J.M. 1894 VI. On a spherical vortex. Phil. Trans. R. Soc. Lond. A 185, 213245.Google Scholar
Jiang, H., Costello, J.H. & Colin, S.P. 2021 Fluid dynamics and efficiency of colonial swimming via multijet propulsion at intermediate Reynolds numbers. Phys. Rev. Fluids 6 (1), 013103.CrossRefGoogle Scholar
Jiang, H. & Grosenbaugh, M.A. 2006 Numerical simulation of vortex ring formation in the presence of background flow with implications for squid propulsion. Theor. Comput. Fluid Dyn. 20 (2), 103123.CrossRefGoogle Scholar
Krieg, M. & Mohseni, K. 2013 Modelling circulation, impulse and kinetic energy of starting jets with non-zero radial velocity. J. Fluid Mech. 719, 488526.CrossRefGoogle Scholar
Krieg, M. & Mohseni, K. 2021 A new kinematic criterion for vortex ring pinch-off. Phys. Fluids 33 (3), 037120.CrossRefGoogle Scholar
Krueger, P.S. 2005 An over-pressure correction to the slug model for vortex ring circulation. J. Fluid Mech. 545, 427443.CrossRefGoogle Scholar
Krueger, P.S., Dabiri, J.O. & Gharib, M. 2003 Vortex ring pinchoff in the presence of simultaneously initiated uniform background co-flow. Phys. Fluids 15 (7), L49L52.CrossRefGoogle Scholar
Krueger, P.S., Dabiri, J.O. & Gharib, M. 2006 The formation number of vortex rings formed in uniform background co-flow. J. Fluid Mech. 556, 147166.CrossRefGoogle Scholar
Krueger, P.S. & Gharib, M. 2003 The significance of vortex ring formation to the impulse and thrust of a starting jet. Phys. Fluids 15 (5), 12711281.CrossRefGoogle Scholar
Krueger, P.S., Moslemi, A.A., Nichols, J.T., Bartol, I.K. & Stewart, W.J. 2008 Vortex rings in bio-inspired and biological jet propulsion. In Advances in Science and Technology, vol. 58, pp. 237–246. Trans Tech.CrossRefGoogle Scholar
Lim, T.T. & Nickels, T.B. 1995 Vortex rings. In Fluid Vortices (ed. S.I. Green), pp. 95–153. Springer.CrossRefGoogle Scholar
Linden, P.F. 2011 The efficiency of pulsed-jet propulsion. J. Fluid Mech. 668, 14.CrossRefGoogle Scholar
Linden, P.F. & Turner, J.S. 2001 The formation of ‘optimal’ vortex rings, and the efficiency of propulsion devices. J. Fluid Mech. 427, 6172.CrossRefGoogle Scholar
Linden, P.F. & Turner, J.S. 2004 ‘Optimal’ vortex rings and aquatic propulsion mechanisms. Proc. R. Soc. Lond. B 271 (1539), 647653.CrossRefGoogle ScholarPubMed
Luo, Y., Xiao, Q., Zhu, Q. & Pan, G. 2021 Jet propulsion of a squid-inspired swimmer in the presence of background flow. Phys. Fluids 33 (3), 031909.CrossRefGoogle Scholar
Ma, X., Gong, X. & Jiang, N. 2022 Experimental study of vortex formation in pulsating jet flow by time-resolved particle image velocimetry. Phys. Fluids 34 (3), 035105.CrossRefGoogle Scholar
Mohseni, K. 2006 Pulsatile vortex generators for low-speed maneuvering of small underwater vehicles. Ocean Engng 33 (16), 22092223.CrossRefGoogle Scholar
Mohseni, K. & Gharib, M. 1998 A model for universal time scale of vortex ring formation. Phys. Fluids 10 (10), 24362438.CrossRefGoogle Scholar
Moslemi, A.A. & Krueger, P.S. 2010 Propulsive efficiency of a biomorphic pulsed-jet underwater vehicle. Bioinspir. Biomim. 5 (3), 036003.CrossRefGoogle ScholarPubMed
Moslemi, A.A. & Krueger, P.S. 2011 The effect of Reynolds number on the propulsive efficiency of a biomorphic pulsed-jet underwater vehicle. Bioinspir. Biomim. 6 (2), 026001.CrossRefGoogle ScholarPubMed
Nichols, J.T. & Krueger, P.S. 2012 Effect of vehicle configuration on the performance of a submersible pulsed-jet vehicle at intermediate Reynolds number. Bioinspir. Biomim. 7 (3), 036010.CrossRefGoogle ScholarPubMed
Norbury, J. 1973 A family of steady vortex rings. J. Fluid Mech. 57 (3), 417431.CrossRefGoogle Scholar
Rosenfeld, M., Rambod, E. & Gharib, M. 1998 Circulation and formation number of laminar vortex rings. J. Fluid Mech. 376, 297318.CrossRefGoogle Scholar
Ruiz, L.A., Whittlesey, R.W. & Dabiri, J.O. 2011 Vortex-enhanced propulsion. J. Fluid Mech. 668, 532.CrossRefGoogle Scholar
Saffman, P.G. 1975 On the formation of vortex rings. Stud. Appl. Maths 54 (3), 261268.CrossRefGoogle Scholar
Shariff, K. & Leonard, A. 1992 Vortex rings. Annu. Rev. Fluid Mech. 24 (1), 235279.CrossRefGoogle Scholar
Shusser, M. & Gharib, M. 2000 Energy and velocity of a forming vortex ring. Phys. Fluids 12 (3), 618621.CrossRefGoogle Scholar
Shusser, M., Gharib, M. & Mohseni, K. 1999 A new model for inviscid vortex ring formation. In 30th Fluid Dynamics Conference, p. 3805. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Whittlesey, R.W. & Dabiri, J.O. 2013 Optimal vortex formation in a self-propelled vehicle. J. Fluid Mech. 737, 78104.CrossRefGoogle Scholar
Zhang, X., Wang, J. & Wan, D. 2020 CFD investigations of evolution and propulsion of low speed vortex ring. Ocean Engng 195, 106687.CrossRefGoogle Scholar
Zhao, W., Frankel, S.H. & Mongeau, L.G. 2000 Effects of trailing jet instability on vortex ring formation. Phys. Fluids 12 (3), 589596.CrossRefGoogle Scholar
Zhu, J., Zhang, G., Gao, L. & Yu, S.C.M. 2022 The formation process of annular starting jets. J. Fluid Mech. 949, A47.CrossRefGoogle Scholar
Zhu, J., Zhang, G., Gao, L. & Yu, S.C.M. 2023 The circulation growth of non-impulsive starting jet. Phys. Fluids 35 (5), 057102.Google Scholar