Avila, M., Mellibovsky, F., Roland, N. & Hof, B.
2013
Streamwise-localized solutions at the onset of turbulence in pipe flow. Phys. Rev. Lett.
110, 224502.

Blackburn, H. M., Hall, P. & Sherwin, S.
2013
Lower branch equilibria in Couette flow: the emergence of canonical states for arbitrary shear flows. J. Fluid Mech.
726, R2.

Cambon, C. & Scott, J. F.
1999
Linear and nonlinear models of anisotropic turbulence. Annu. Rev. Fluid Mech.
31, 1–53.

Champagne, F. H., Harris, V. G. & Corrsin, S.
1970
Experiments on nearly homogeneous turbulent shear flow. J. Fluid Mech.
41, 81–139.

Chandler, G. J. & Kerswell, R. R.
2013
Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow. J. Fluid Mech.
722, 554–595.

Cvitanović, P.
2013
Recurrent flows: the clockwork behind turbulence. J. Fluid Mech.
726, 1–4.

Deguchi, K.
2015
Self-sustained states at Kolmogorov microscale. J. Fluid Mech.
781, R6.

Deguchi, K. & Hall, P.
2014a
Canonical exact coherent structures embedded in high Reynolds number flows. Phil. Trans. R. Soc. Lond. A
372, 20130352.

Deguchi, K. & Hall, P.
2014b
The high-Reynolds-number asymptotic development of nonlinear equilibrium states in plane Couette flow. J. Fluid Mech.
750, 99–112.

Deguchi, K. & Hall, P.
2016
On the instability of vortex–wave interaction states. J. Fluid Mech.
802, 634–666.

Deguchi, K., Hall, P. & Walton, A.
2013
The emergence of localized vortex–wave interaction states in plane Couette flow. J. Fluid Mech.
721, 58–85.

Faisst, H. & Eckhardt, B.
2003
Traveling waves in pipe flow. Phys. Rev. Lett.
91, 224502.

Flores, O. & Jiménez, J.
2010
Hierarchy of minimal flow units in the logarithmic layer. Phys. Fluids
22, 071704.

Gerz, T., Schumann, U. & Elghobashi, S. E.
1989
Direct numerical simulation of stratified homogeneous turbulent shear flows. J. Fluid Mech.
200, 563–594.

Gibson, J. F. & Brand, E.
2014
Spanwise-localized solutions of planar shear flows. J. Fluid Mech.
745, 25–61.

Goto, S.
2008
A physical mechanism of the energy cascade in homogeneous isotropic turbulence. J. Fluid Mech.
605, 355–366.

Goto, S.
2012
Coherent structures and energy cascade in homogeneous turbulence. Prog. Theor. Phys. Suppl.
195, 139–156.

Gualtieri, P., Casciola, C. M., Benzi, R. & Piva, R.
2007
Preservation of statistical properties in large-eddy simulation of shear turbulence. J. Fluid Mech.
592, 471–494.

Hall, P. & Sherwin, S.
2010
Streamwise vortices in shear flows: harbingers of transition and the skeleton of coherent structures. J. Fluid Mech.
661, 178–205.

Hall, P. & Smith, F. T.
1991
On strongly nonlinear vortex/wave interactions in boundary-layer transition. J. Fluid Mech.
227, 641–666.

Hughes, T. J. R., Oberai, A. A. & Mazzei, L.
2001
Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys. Fluids
13, 6.

Hwang, Y. & Cossu, C.
2010
Self-sustained process at large scales in turbulent channel flow. Phys. Rev. Lett.
105, 044505.

Hwang, Y., Willis, A. P. & Cossu, C.
2016
Invariant solutions of minimal large-scale structures in turbulent channel flow for *Re*
_{𝜏} up to 1000. J. Fluid Mech.
802.

Itano, T. & Generalis, S. C.
2009
Hairpin vortex solution in planar Couette flow: a tapestry of knotted vortices. Phys. Rev. Lett.
102 (11), 114501.

Itano, T. & Toh, S.
2001
The dynamics of bursting process in wall turbulence. J. Phys. Soc. Japan
70, 703–716.

Jiménez, J.1987 Coherent structures and dynamical systems. In *Proceedings of CTR Summer School*, pp. 323–324. Stanford University.

Jiménez, J., Kawahara, G., Simens, M. P., Nagata, M. & Shiba, M.
2005
Characterization of near-wall turbulence in terms of equilibrium and ‘bursting’ solutions. Phys. Fluids
17, 015105.

Jiménez, J. & Moin, P.
1991
The minimal flow unit in near-wall turbulence. J. Fluid Mech.
225, 213–240.

Kawahara, G.
2005
Laminarization of minimal plane Couette flow: going beyond the basin of attraction of turbulence. Phys. Fluids
17, 041702.

Kawahara, G. & Kida, S.
2001
Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst. J. Fluid Mech.
449, 291–300.

Kawahara, G., Uhlmann, M. & Van Veen, L.
2012
The significance of simple invariant solutions in turbulent flows. Annu. Rev. Fluid Mech.
44, 203–225.

Kerswell, R. R. & Tutty, O. R.
2007
Recurrence of travelling waves in transitional pipe flow. J. Fluid Mech.
584, 69–102.

Kim, J., Moin, P. & Moser., R. D.
1987
Turbulent statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech.
177, 133–166.

Kreilos, T. & Eckhardt, B.
2012
Periodic orbits near onset of chaos in plane couette flow. Chaos
22 (4), 047505.

Nagata, M.
1990
Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity. J. Fluid Mech.
217, 519–527.

Park, J. S. & Graham, M. D.
2015
Exact coherent states and connections to turbulent dynamics in minimal channel flow. J. Fluid Mech.
782, 430–454.

Piomelli, U., Rouhi, A. & Geurts, B. J.
2015
A grid-independent length scale for large-eddy simulations. J. Fluid Mech.
766, 499–527.

Pope, S. B.
2000
Turbulent Flows. Cambridge University Press.

Pumir, A.
1996
Turbulence in homogeneous shear flows. Phys. Fluids
8, 3112–3127.

Rawat, S., Cossu, C., Hwang, Y. & Rincon, F.
2015
On the self-sustained nature of large-scale motions in turbulent Couette flow. J. Fluid Mech.
782, 515–540.

Rogers, M. M. & Moin, P.
1987
The structure of the vorticity field in homogeneous turbulent flows. J. Fluid Mech.
176, 33–66.

Sánchez, J. & Net, M.
2010
On the multiple shooting continuation of periodic orbits by Newton–Krylov methods. Intl J. Bifurcation Chaos
20, 43–61.

Sasaki, E., Kawahara, G., Sekimoto, A. & Jiménez, J.
2016
Unstable periodic orbits in plane Couette flow with the Smagorinsky model. J. Phys.: Conf. Ser.
708, 012003.

Schmiegel, A. & Eckhardt, B.
1997
Fractal stability border in plane Couette flow. Phys. Rev. Lett.
277, 197–225.

Schneider, T. M., Gibson, J. F. & Burke, J.
2010
Snakes and ladders: localized solutions of plane Couette flow. Phys. Rev. Lett.
104, 104501.

Scovazzi, G., Jiménez, J. & Moin, P.
2001
LES of the very large scales in a *Re*
_{𝜏} = 920 channel. In Proc. Div. Fluid Dyn. pp. KF–5, American Physical Society.

Sekimoto, A., Dong, S. & Jiménez, J.
2016
Direct numerical simulation of statistically stationary and homogeneous shear turbulence and its relation to other shear flows. Phys. Fluids
28, 035101.

Skufca, J. D., Yorke, J. A. & Eckhardt, B.
2006
Edge of chaos in a parallel shear flow. Phys. Rev. Lett.
96, 174101.

Smagorinsky, J.
1963
General circulation experiments with the primitive equations. Mon. Weath. Rev.
91, 99–164.

Tavoularis, S. & Karnik, U.
1989
Further experiments on the evolution of turbulent stresses and scales in uniformly sheared turbulence. J. Fluid Mech.
204, 457–478.

Toh, S. & Itano, T.
2003
A periodic-like solution in channel flow. J. Fluid Mech.
481, 67–76.

van Veen, L. & Kawahara, G.
2011
Homoclinic tangle on the edge of shear turbulence. Phys. Rev. Lett.
107, 114501.

van Veen, L., Kawahara, G. & Matsumura, A.
2011
On matrix-free computation of 2D unstable manifolds. SIAM J. Sci. Comput.
33, 25–44.

van Veen, L., Kida, S. & Kawahara, G.
2006
Periodic motion representing isotropic turbulence. Fluid Dyn. Res.
38, 19–46.

Viswanath, D.
2007
Recurrent motions within plane Couette turbulence. J. Fluid Mech.
580, 339–358.

Viswanath, D.
2009
The critical layer in pipe flow at high Reynolds number. Phil. Trans. R. Soc. Lond. A
367, 561–576.

Waleffe, F.
1997
On a self-sustaining process in shear flows. Phys. Fluids
9, 883–900.

Waleffe, F.
2001
Exact coherent structures in channel flow. J. Fluid Mech.
435, 93–102.

Wang, J., Gibson, J. & Waleffe, F.
2007
Lower branch coherent states in shear flows: transition and control. Phys. Rev. Lett.
98, 204501.

Wedin, H. & Kerswell, R.
2004
Exact coherent structures in pipe flow: traveling wave solutions. J. Fluid Mech.
435, 333–371.

Yasuda, T., Goto, S. & Kawahara, G.
2014
Quasi-cyclic evolution of turbulence driven by a steady force in a periodic cube. Fluid Dyn. Res.
46, 061413.

Zammert, S. & Eckhardt, B.
2015
Crisis bifurcations in plane Poiseuille flow. Phys. Rev. E
91, 041003.