Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-03T01:56:23.019Z Has data issue: false hasContentIssue false

Velocity and temperature scalings leading to compressible laws of the wall

Published online by Cambridge University Press:  22 December 2023

P.G. Huang
Affiliation:
Mechanical and Materials Engineering, Wright State University, Dayton, OH 45435, USA
G.N. Coleman
Affiliation:
Computational AeroSciences, NASA Langley Research Center, Hampton, VA 23681, USA
P.R. Spalart
Affiliation:
Boeing Commercial Airplanes, Seattle, WA 98124 (retired), USA
X.I.A. Yang*
Affiliation:
Mechanical Engineering, Pennsylvania State University, University Park, PA 16802, USA
*
Email address for correspondence: xzy48@psu.edu

Abstract

We exploit the similarity between the mean momentum equation and the mean energy equation and derive transformations for mean temperature profiles in compressible wall-bounded flows. In contrast to prior studies that rely on the strong Reynolds analogy and the presumed similarity between the instantaneous and mean velocity and temperature signals, the discussion in this paper involves the Farve-averaged equations only. We establish that the compressible momentum and energy equations can be made identical to their incompressible counterparts under appropriate normalizations and coordinate transformations. Two types of transformations are explored for illustration purposes: Van Driest (VD)-type transformations and semi-local-type or Trettel–Larsson (TL)-type transformations. In our derivations, it becomes clear that VD-type velocity and temperature transformations hold exclusively within the logarithmic layer. On the other hand, TL-type transformations extend their applicability to incorporate wall-damping effects, at least in principle. Each type of transformation serves its distinct purpose and has its applicable range. However, it is noteworthy that while VD-type transformations can be assessed using measurements obtained from laboratory experiments, TL-type transformations necessitate viscosity and density information typically accessible only through numerical simulations. Finally, we justify the omission of the turbulent kinetic energy transfer term, a term that is unclosed, in the energy equation. This omission leads to closed-form temperature transformations that are valid for both adiabatic and isothermal walls.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, H. & Antonia, R.A. 2019 Mean temperature calculations in a turbulent channel flow for air and mercury. Intl J. Heat Mass Transfer 132, 11521165.CrossRefGoogle Scholar
Abe, H., Kawamura, H. & Matsuo, Y. 2004 Surface heat-flux fluctuations in a turbulent channel flow up to $Re_\tau = 1020$ with $Pr= 0.025$ and 0.71. Intl J. Heat Fluid Flow 25 (3), 404419.CrossRefGoogle Scholar
Bin, Y., Huang, G. & Yang, X.I.A. 2023 Data-enabled recalibration of the Spalart–Allmaras model. AIAA J. 1, 112.CrossRefGoogle Scholar
Bose, S.T. & Park, G.I. 2018 Wall-modeled large-eddy simulation for complex turbulent flows. Annu. Rev. Fluid Mech. 50, 535561.CrossRefGoogle ScholarPubMed
Bradshaw, P. & Huang, G.P. 1995 The law of the wall in turbulent flow. Proc. R. Soc. Lond. Ser. A: Math. Phys. Sci. 451 (1941), 165188.Google Scholar
Busemann, A. 1931 Handbuch der experimentalphysik, vol. 4. Geest und Portig.Google Scholar
Cebeci, T. 1974 Analysis of Turbulent Boundary Layers. Elsevier.Google Scholar
Chen, P.E.S., Huang, G.P, Shi, Y., Yang, X.I.A. & Lv, Y. 2022 A unified temperature transformation for high-Mach-number flows above adiabatic and isothermal walls. J. Fluid Mech. 951, A38.CrossRefGoogle Scholar
Chen, P.E.S., Zhu, X., Shi, Y. & Yang, X.I.A. 2023 Quantifying uncertainties in direct-numerical-simulation statistics due to wall-normal numerics and grids. Phys. Rev. Fluids 8 (7), 074602.CrossRefGoogle Scholar
Crocco, L. 1932 Transmission of heat from a flat plate to a fluid flowing at a high velocity. Tech. Rep. NASA.Google Scholar
Duan, L. & Martin, M.P. 2011 Direct numerical simulation of hypersonic turbulent boundary layers. Part 4. Effect of high enthalpy. J. Fluid Mech. 684, 2559.CrossRefGoogle Scholar
Gaviglio, J. 1987 Reynolds analogies and experimental study of heat transfer in the supersonic boundary layer. Intl J. Heat Mass Transfer 30 (5), 911926.CrossRefGoogle Scholar
Griffin, K.P., Fu, L. & Moin, P. 2021 Velocity transformation for compressible wall-bounded turbulent flows with and without heat transfer. Proc. Natl Acad. Sci. 118 (34), e2111144118.CrossRefGoogle ScholarPubMed
Guarini, S.E, Moser, R.D, Shariff, K. & Wray, A. 2000 Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.5. J. Fluid Mech. 414, 133.CrossRefGoogle Scholar
Huang, P.G. & Coleman, G.N. 1994 Van Driest transformation and compressible wall-bounded flows. AIAA J. 32 (10), 21102113.CrossRefGoogle Scholar
Huang, P.G., Coleman, G.N. & Bradshaw, P. 1995 Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech. 305, 185218.Google Scholar
Hultmark, M., Vallikivi, M., Bailey, S.C.C. & Smits, A.J. 2012 Turbulent pipe flow at extreme Reynolds numbers. Phys. Rev. Lett. 108 (9), 094501.CrossRefGoogle ScholarPubMed
Johnson, D.A. & King, L.S. 1985 A mathematically simple turbulence closure model for attached and separated turbulent boundary layers. AIAA J. 23 (11), 16841692.CrossRefGoogle Scholar
Kader, B.A. 1981 Temperature and concentration profiles in fully turbulent boundary layers. Intl J. Heat Mass Transfer 24 (9), 15411544.CrossRefGoogle Scholar
von Kármán, T. 1930 Mechanische ähnlichkeit und turbulenz, nach ges. Wiss. Gottingen. Math. Physik. Klasse, 58–68.Google Scholar
Kays, W.M. 1994 Turbulent Prandtl number. Where are we? ASME J. Heat Transfer 116 (2), 284295.CrossRefGoogle Scholar
Kays, W.M. & Crawford, M.E. 1980 Convective Heat and Mass Transfer, 2nd edn. McGraw-Hill.Google Scholar
Kim, J. & Moin, P. 1989 Transport of passive scalars in a turbulent channel flow. In Turbulent Shear Flows 6, pp. 85–96. Springer.CrossRefGoogle Scholar
Lee, M. & Moser, R.D. 2015 Direct numerical simulation of turbulent channel flow up to $Re_\tau \approx 5200$. J. Fluid Mech. 774, 395415.CrossRefGoogle Scholar
Li, D. 2019 Turbulent Prandtl number in the atmospheric boundary layer-where are we now? Atmos. Res. 216, 86105.CrossRefGoogle Scholar
Liang, X. & Li, X.L. 2013 DNS of a spatially evolving hypersonic turbulent boundary layer at Mach 8. Sci. China Phys. Mech. Astron. 56, 14081418.CrossRefGoogle Scholar
Lluesma-Rodriguez, F., Hoyas, S. & Perez-Quiles, M.J. 2018 Influence of the computational domainon DNS of turbulent heat transfer up to $Re_\tau = 2000$ for $Pr =0.71$. Intl J. Heat Mass Transfer 122, 983992.Google Scholar
Lusher, D.J. & Coleman, G.N. 2022 Numerical study of the turbulent Prandtl number in supersonic plane-channel flow–the effect of thermal boundary conditions on the turbulent Prandtl number in the low-supersonic regime. Intl J. Comput. Fluid Dyn. 36 (9), 797815.CrossRefGoogle Scholar
Maeder, T., Adams, N.A. & Kleiser, L. 2001 Direct simulation of turbulent supersonic boundary layers by an extended temporal approach. J. Fluid Mech. 429, 187216.CrossRefGoogle Scholar
Marusic, I. & Monty, J.P. 2019 Attached eddy model of wall turbulence. Annu. Rev. Fluid Mech. 51, 4974.CrossRefGoogle Scholar
Marusic, I., Monty, J.P, Hultmark, M. & Smits, A.J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3.Google Scholar
McKeon, B.J, Li, J, Jiang, W, Morrison, J.F. & Smits, A.J. 2004 Further observations on the mean velocity distribution in fully developed pipe flow. J. Fluid Mech. 501, 135147.CrossRefGoogle Scholar
Morkovin, M.V. 1962 Effects of compressibility on turbulent flows. In Colloquium on International Mechanical Turbulence, pp. 367–380. Center national de la recherche scientifique.Google Scholar
Patel, A., Boersma, B.J. & Pecnik, R. 2017 Scalar statistics in variable property turbulent channel flows. Phys. Rev. Fluids 2 (8), 084604.Google Scholar
Patel, A., Peeters, J.W.R., Boersma, B.J. & Pecnik, R. 2015 Semi-local scaling and turbulence modulation in variable property turbulent channel flows. Phys. Fluids 27 (9), 095101.CrossRefGoogle Scholar
Pecnik, R. & Patel, A. 2017 Scaling and modelling of turbulence in variable property channel flows. J. Fluid Mech. 823, R1.Google Scholar
Pirozzoli, S., Bernardini, M. & Orlandi, P. 2016 Passive scalars in turbulent channel flow at high Reynolds number. J. Fluid Mech. 788, 614639.Google Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Prandtl, L. 1932 Zur turbulenten strömung in rohren und längs platten. Ergeb. Aerodyn. Versuchanstalt 4, 1829.Google Scholar
Rotta, J.C. 1960 Turbulent boundary layers with heat transfer in compressible flow. AGARD Rep. 281.Google Scholar
She, Z.-S., Chen, X. & Hussain, F. 2017 Quantifying wall turbulence via a symmetry approach: a Lie group theory. J. Fluid Mech. 827, 322356.CrossRefGoogle Scholar
Spalart, P. & Allmaras, S. 1992 A one-equation turbulence model for aerodynamic flows. In 30th Aerospace Sciences Meeting and Exhibit, 439.Google Scholar
Trettel, A. & Larsson, J. 2016 Mean velocity scaling for compressible wall turbulence with heat transfer. Phys. Fluids 28 (2), 026102.CrossRefGoogle Scholar
Van Driest, E.R. 1951 Turbulent boundary layer in compressible fluids. J. Aeronaut. Sci. 18 (3), 145160.CrossRefGoogle Scholar
Van Driest, E.R. 1956 On turbulent flow near a wall. J. Aeronaut. Sci. 23 (11), 10071011.Google Scholar
Walz, A. 1959 Compressible turbulent boundary layers with heat transfer and pressure gradient in flow direction. J. Res. Natl Bur. Stand. 63, 53–70.Google Scholar
Weigand, B., Ferguson, J.R. & Crawford, M.E. 1997 An extended Kays and Crawford turbulent Prandtl number model. Intl J. Heat Mass Transfer 40 (17), 41914196.CrossRefGoogle Scholar
Wenzel, C., Gibis, T. & Kloker, M. 2022 About the influences of compressibility, heat transfer and pressure gradients in compressible turbulent boundary layers. J. Fluid Mech. 930, A1.CrossRefGoogle Scholar
Xu, H.H.A. & Yang, X.I.A. 2018 Fractality and the law of the wall. Phys. Rev. E 97 (5), 053110.CrossRefGoogle ScholarPubMed
Yang, X.I.A. & Abkar, M. 2018 A hierarchical random additive model for passive scalars in wall-bounded flows at high Reynolds numbers. J. Fluid Mech. 842, 354380.CrossRefGoogle ScholarPubMed
Yang, X.I.A. & Lv, Y. 2018 A semi-locally scaled eddy viscosity formulation for LES wall models and flows at high speeds. Theor. Comput. Fluid Dyn. 32 (5), 617627.Google Scholar
Yang, X.I.A. & Meneveau, C. 2019 Hierarchical random additive model for wall-bounded flows at high Reynolds numbers. Fluid Dyn. Res. 51 (1), 011405.Google Scholar
Yang, X.I.A, Urzay, J, Bose, S. & Moin, P. 2018 Aerodynamic heating in wall-modeled large-eddy simulation of high-speed flows. AIAA J. 56 (2), 731742.CrossRefGoogle Scholar
Zhang, Y.-S., Bi, W.-T., Hussain, F., Li, X.-L. & She, Z.-S. 2012 Mach-number-invariant mean-velocity profile of compressible turbulent boundary layers. Phys. Rev. Lett. 109 (5), 054502.Google Scholar
Zhang, Y.-S., Bi, W.-T., Hussain, F. & She, Z.-S. 2014 A generalized Reynolds analogy for compressible wall-bounded turbulent flows. J. Fluid Mech. 739, 392420.CrossRefGoogle Scholar