Skip to main content Accessibility help

A variational derivation of the geostrophic momentum approximation

  • Marcel Oliver (a1)


This paper demonstrates that the shallow water semigeostrophic equations arise from a degenerate second-order Hamilton principle of very special structure. The associated Euler–Lagrange operator factors into a fast and a slow first-order operator; restricting to the slow part yields the geostrophic momentum approximation as balanced dynamics. While semigeostrophic theory has been considered variationally before, this structure appears to be new. It leads to a straightforward derivation of the geostrophic momentum approximation and its associated potential vorticity law. Our observations further affirm, from a different point of view, the known difficulty in generalizing the semigeostrophic equations to the case of a spatially varying Coriolis parameter.


Corresponding author

Email address for correspondence:


Hide All
Ambrosio, L., Colombo, M., De Philippis, G. & Figalli, A. 2012 Existence of Eulerian solutions to the semigeostrophic equations in physical space: the 2-dimensional periodic case. Commun. Part. Diff. Equ. 37, 22092227.
Andrews, D. G. & McIntyre, M. E. 1978 An exact theory of waves on a Lagrangian-mean flow. J. Fluid Mech. 89, 609646.
Arnold, V. I. & Khesin, B. A. 1998 Topological Methods in Hydrodynamics. Springer.
Benamou, J.-D. & Brenier, Y. 1998 Weak existence for the semigeostrophic equations formulated as a coupled Monge–Ampère/transport problem. SIAM J. Appl. Maths 58, 14501461.
Blumen, W. 1981 The geostrophic coordinate transformation. J. Atmos. Sci. 38, 11001105.
Bretherton, F. P. 1970 A note on Hamilton’s principle for perfect fluids. J. Fluid Mech. 44, 1931.
Bridges, T., Hydon, P. & Reich, S.2001 Vorticity and symplecticity in Lagrangian fluid dynamics. Preprint.
Cullen, M. & Gangbo, W. 2001 A variational approach for the 2-dimensional semi-geostrophic shallow water equations. Arch. Rat. Mech. Anal. 156, 241273.
Cullen, M. J. P. 2006 A Mathematical Theory of Large-Scale Atmosphere/Ocean Flow. Imperial College Press.
Cullen, M. J. P. 2008 Analysis of the semi-geostrophic shallow water equations. Physica D 237, 14611465.
Cullen, M. J. P., Douglas, R. J., Roulstone, I. & Sewell, M. J. 2005 Generalized semi-geostrophic theory on a sphere. J. Fluid Mech. 531, 123157.
Cullen, M. J. P., Norbury, J., Purser, R. J. & Shutts, G. J. 1987 Modelling the quasi-equilibrium dynamics of the atmosphere. Q. J. R. Meteorol. Soc. 113, 735757.
Cullen, M. J. P. & Purser, R. J. 1984 An extended Lagrangian theory of semigeostrophic frontogenesis. J. Atmos. Sci. 41, 14771497.
Cullen, M. J. P. & Purser, R. J. 1989 Properties of the Lagrangian semigeostrophic equations. J. Atmos. Sci. 46, 26842697.
Eliassen, A. 1948 The quasi-static equations of motion with pressure as an independent variable. Geophys. Publ. 17, 144.
Eliassen, A. 1962 On the vertical circulation in frontal zones. Geophys. Publ. 24, 147160.
Figalli, A. 2013 Sobolev regularity for the Monge–Ampère equation, with application to the semigeostrophic equations. Zap. Nauchn. Sem. POMI 411, 103118; Representation Theory, Dynamical Systems, Combinatorial Methods. Part XXII.
Holm, D. D. 2002 Averaged Lagrangians and the mean effects of fluctuations in ideal fluid dynamics. Physica D 170, 253286.
Hoskins, B. J. 1975 The geostrophic momentum approximation and the semi-geostrophic equations. J. Atmos. Sci. 32, 233242.
Jian, H.-Y. & Wang, X.-J. 2007 Continuity estimates for the Monge–Ampère equation. SIAM J. Math. Anal. 39, 608626.
Lychagin, V. V., Rubtsov, V. N. & Chekalov, I. V. 1993 A classification of Monge–Ampère equations. Ann. Sci. Ècole Norm. Sup. (4) 26, 281308.
Marsden, J. E. & Ratiu, T. S. 1994 Introduction to Mechanics and Symmetry. Springer-Verlag.
Marsden, J. E. & Shkoller, S. 2001 Global well-posedness for the Lagrangian averaged Navier–Stokes (LANS- $\alpha $ ) equations on bounded domains. Phil. Trans. R. Soc. Lond. A 359, 14491468.
McIntyre, M. E. & Roulstone, I. 2002 Are there higher-accuracy analogues of semigeostrophic theory? In Large-scale Atmosphere–Ocean Dynamics: II: Geometric Methods and Models (ed. Roulstone, I. & Norbury, J.), Cambridge University Press.
Oliver, M. 2006 Variational asymptotics for rotating shallow water near geostrophy: a transformational approach. J. Fluid Mech. 551, 197234.
Oliver, M. & Vasylkevych, S. 2013 Generalized LSG models with varying Coriolis parameter. Geophys. Astrophys. Fluid Dyn. 107, 259276.
Phillips, N. A. 1963 Geostrophic motion. Rev. Geophys. 1, 123176.
Reznik, G. M., Zeitlin, V. & Ben Jelloul, M. 2001 Nonlinear theory of geostrophic adjustment. Part 1. Rotating shallow-water model. J. Fluid Mech. 445, 93120.
Salmon, R. 1983 Practical use of Hamilton’s principle. J. Fluid Mech. 132, 431444.
Salmon, R. 1985 New equations for nearly geostrophic flow. J. Fluid Mech. 153, 461477.
Salmon, R. 1988 Semi-geostrophic theory as a Dirac-bracket projection. J. Fluid Mech. 196, 345358.
Salmon, R. 1998 Lectures on Geophysical Fluid Dynamics. Oxford University Press.
Salmon, R. 2013 An alternative view of generalized Lagrangian mean theory. J. Fluid Mech. 719, 165182.
Vanneste, J. & Bokhove, O. 2002 Dirac-bracket approach to nearly geostrophic Hamiltonian balanced models. Physica D 164, 152167.
Yudin, M. I. 1955 Invariant quantities in large-scale atmospheric processes. Tr. Glav. Geofiz. Obser. 55, 312; (in Russian).
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

A variational derivation of the geostrophic momentum approximation

  • Marcel Oliver (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.