Skip to main content Accessibility help
×
Home

Using surfactants to stabilize two-phase pipe flows of core–annular type

  • Andrew P. Bassom (a1), M. G. Blyth (a2) and D. T. Papageorgiou (a3)

Abstract

The stability of a core–annular fluid arrangement consisting of two concentric fluid layers surrounding a solid cylindrical rod on the axis of a circular pipe is examined when the interface between the two fluid layers is covered with an insoluble surfactant. The motion is driven either by an imposed axial pressure gradient or by the movement of the rod at a prescribed constant velocity. In the basic state the fluid motion is unidirectional and the interface between the two fluids is cylindrical. A linear stability analysis is performed for arbitrary layer thicknesses and arbitrary Reynolds number. The results show that the flow can be fully stabilized, even at zero Reynolds number, if the base flow shear rate at the interface is set appropriately. This result is confirmed by an asymptotic analysis valid when either of the two fluid layers is thin in comparison to the gap between the pipe wall and the rod. It is found that for a thin inner layer the flow can be stabilized if the inner fluid is more viscous than the outer fluid, and the opposite holds true for a thin outer layer. It is also demonstrated that traditional core–annular flow, for which the rod is absent, may be stabilized at zero Reynolds number if the annular layer is sufficiently thin. Finally, weakly nonlinear simulations of a coupled set of partial differential evolution equations for the interface position and surfactant concentration are conducted with the rod present in the limit of a thin inner layer or a thin outer layer. The ensuing dynamics are found to be sensitive to the size of the curvature of the undisturbed interface.

Copyright

Corresponding author

Email address for correspondence: m.blyth@uea.ac.uk

References

Hide All
1. Bassom, A. P., Blyth, M. G. & Papageorgiou, D. T. 2010 Nonlinear development of two-layer Couette–Poiseuille flow in the presence of surfactant. Phys. Fluids 22, 102102.
2. Blyth, M. G., Hall, P. & Papageorgiou, D. T. 2003 Chaotic flows in pulsating cylindrical tubes: a class of exact Navier–Stokes solutions. J. Fluid Mech. 481, 187213.
3. Blyth, M. G., Luo, H. & Pozrikidis, C. 2006 Stability of axisymmetric core–annular flow in the presence of an insoluble surfactant. J. Fluid Mech. 548, 207235.
4. Blyth, M. G. & Pozrikidis, C. 2004 Effect of surfactants on the stability of two-layer channel flow. J. Fluid Mech. 505, 5986.
5. Dijkstra, H. A. 1990 The coupling of Marangoni and capillary instabilities in an annular thread of liquid. J. Colloid. Interface Sci. 136 (1), 151159.
6. Dijkstra, H. A. 1992 The coupling of interfacial instabilities and the stabilization of two-layer annular flows. Phys. Fluids 4 (9), 19151928.
7. Dijkstra, H. A. & Steen, P. H. 1991 Thermocapillary stabilization of the capillary breakup of an annular film of liquid. J. Fluid Mech. 229, 205228.
8. Dongarra, J. J., Straughan, B. & Walker, D. W. 1996 Chebyshev tau-QZ algorithm methods for calculating spectra of hydrodynamic stability problems. Appl. Numer. Math. 22, 399434.
9. Frenkel, A. L. & Halpern, D. 2002 Stokes-flow instability due to interfacial surfactant. Phys. Fluids 14, L45L48.
10. Georgiou, E., Maldarelli, C., Papageorgiou, D. T. & Rumschitzki, D. S. 1992 An asymptotic theory for the linear stability of a core–annular flow in the thin annular limit. J. Fluid Mech. 243, 653677.
11. Goren, S. L. 1962 The instability of an annular thread of fluid. J. Fluid Mech. 12, 301319.
12. Grotberg, J. B. & Jensen, O. E. 2004 Biofluid mechanics in flexible tubes. Annu. Rev. Fluid Mech. 36, 121147.
13. Halpern, D. & Frenkel, A. L. 2003 Destabilization of a creeping flow by interfacial surfactant: linear theory extended to all wavenumbers. J. Fluid Mech. 485, 191220.
14. Halpern, D. & Frenkel, A. L. 2008 Nonlinear evolution, travelling waves, and secondary instability of sheared-film flows with insoluble surfactants. J. Fluid Mech. 594, 125156.
15. Hammond, P. S. 1983 Nonlinear adjustment of a thin annular film of viscous fluid surrounding a thread of another within a circular cylindrical pipe. J. Fluid Mech. 137, 363384.
16. Joseph, D. D., Bai, R., Chen, K. P. & Renardy, Y. Y. 1997 Core-annular flows. Annu. Rev. Fluid Mech. 29, 6590.
17. Joseph, D. D. & Renardy, Y. Y. 1993 Fundamentals of Two-Fluid Dynamics. Part 1. Mathematical Theory and Applications. Part 2. Lubricated Transport, Drops and Miscible Liquids. Springer.
18. Joseph, D. D., Renardy, M. & Renardy, Y. Y. 1984 Instability of the flow of two immiscible liquids with different viscosities in a pipe. J. Fluid Mech. 141, 309317.
19. Kas-Danouche, S. A, Papageorgiou, D. T. & Siegel, M. 2009 Nonlinear dynamics of core–annular film flows in the presence of surfactant. J. Fluid Mech. 626, 415448.
20. Kouris, C. & Tsamopoulos, J. 2001 Dynamics of axisymmetric core–annular flow in a straight tube. Part 1. The more viscous fluid in the core, bamboo waves. Phys. Fluids 13, 841858.
21. Kouris, C. & Tsamopoulos, J. 2002 Dynamics of axisymmetric core–annular flow. Part 2. The less viscous fluid in the core, saw tooth waves. Phys. Fluids 14, 10111029.
22. Kwak, S. & Pozrikidis, C. 2001 Effect of surfactants on the instability of a liquid thread or annular layer. Part 1. Quiescent fluids. Intl J. Multiphase Flow 27, 137.
23. Lister, J. R., Rallison, J. M., King, A. A., Cummings, L. J. & Jensen, O. E. 2006 Capillary drainage of an annular film: the dynamics of collars and lobes. J. Fluid Mech. 552, 311343.
24. Newhouse, L. A. & Pozrikidis, C. 1992 The capillary instability of annular layers and liquid threads. J. Fluid Mech. 242, 193209.
25. Orszag, S. A. 1971 Accurate solution of the Orr–Sommerfeld stability equation. J. Fluid Mech. 50, 689703.
26. Otis, D. R., Johnson, M., Pedley, T. J. & Kamm, R. D. 1993 Role of pulmonary surfactant in airway closure: a computational study. J. Appl. Physiol. 75, 13231333.
27. Papageorgiou, D. T., Maldarelli, C. & Rumschitzki, D. S. 1990 Nonlinear interfacial stability of core–annular flows. Phys. Fluids 2, 340352.
28. Plateau, J. A. F. 1873 Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires. Gauthier-Villars.
29. Pozrikidis, C. 1997 Introduction to Theoretical and Computational Fluid Dynamics. Oxford University Press.
30. Pozrikidis, C. & Hill, A. I. 2011 Surfactant-induced instability of a sheared liquid layer. IMA J. Appl. Math. 76, 859875.
31. Preziosi, L., Chen, K. & Joseph, D. D. 1989 Lubricated pipelining: stability of core–annular flow. J. Fluid Mech. 201, 323356.
32. Rayleigh, J. W. S. 1878 On the instability of jets. Proc. Lond. Math. Soc. 10, 413.
33. Rayleigh, J. W. S. 1892 On the stability of a cylinder of viscous liquid under a capillary force. Phil. Mag. 34, 145154.
34. Renardy, Y. Y. 1997 Snakes and corkscrews in core–annular down-flow of two fluids. J. Fluid Mech. 340, 297317.
35. Russo, M. J. & Steen, P. H. 1989 Shear stabilization of the capillary breakup of a cylindrical interface. Phys. Fluids 1, 19261937.
36. Siderius, A., Kehl, S. K. & Leaist, D. G. 2002 Surfactant diffusion near critical micelle concentrations. J. Solution Chem. 31, 607625.
37. Smyrlis, Y. S. & Papageorgiou, D. T. 1998 On the effects of generalized dispersion on dissipative dynamical systems. Appl. Math. Lett. 11, 9399.
38. Tomotika, S. 1935 On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proc. R. Soc. Lond. A 150, 322337.
39. Wang, Q. & Papageorgiou, D. T. 2011 Dynamics of a viscous thread surrounded by another viscous fluid in a cylindrical tube under the action of a radial electric field: breakup and touchdown singularities. J. Fluid Mech. 683, 2756.
40. Weber, Z. Z. 1931 The break-up of liquid jets. Z. Math. Mech. 11, 136154.
41. Wei, H.-H. 2005 Marangoni destabilization on a core–annular film flow due to the presence of a surfactant. Phys. Fluids 17, 027101.
42. Wei, H.-H. & Rumschitzki, D. S. 2002a The linear stability of a core–annular flow in an asymptotically corrugated tube. J. Fluid Mech. 466, 113147.
43. Wei, H.-H. & Rumschitzki, D. S. 2002b The weakly nonlinear interfacial stability of a core–annular flow in a corrugated tube. J. Fluid Mech. 466, 149177.
44. Wei, H.-H. & Rumschitzki, D. S. 2005 The effects of insoluble surfactants on the linear stability of a core–annular flow. J. Fluid Mech. 541, 115142.
45. Xu, J. J. & Davis, S. H. 1985 Instability of capillary jets with thermocapillarity. J. Fluid Mech. 161, 125.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Using surfactants to stabilize two-phase pipe flows of core–annular type

  • Andrew P. Bassom (a1), M. G. Blyth (a2) and D. T. Papageorgiou (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed