Skip to main content Accessibility help
×
Home

Unstable Richtmyer–Meshkov growth of solid and liquid metals in vacuum

  • W. T. Buttler (a1), D. M. Oró (a1), D. L. Preston (a2), K. O. Mikaelian (a3), F. J. Cherne (a4), R. S. Hixson (a1), F. G. Mariam (a1), C. Morris (a1), J. B. Stone (a1), G. Terrones (a5) and D. Tupa (a1)...

Abstract

We present experimental results supporting physics-based ejecta model development, where our main assumption is that ejecta form as a special limiting case of a Richtmyer–Meshkov (RM) instability at a metal–vacuum interface. From this assumption, we test established theory of unstable spike and bubble growth rates, rates that link to the wavelength and amplitudes of surface perturbations. We evaluate the rate theory through novel application of modern laser Doppler velocimetry (LDV) techniques, where we coincidentally measure bubble and spike velocities from explosively shocked solid and liquid metals with a single LDV probe. We also explore the relationship of ejecta formation from a solid material to the plastic flow stress it experiences at high-strain rates () and high strains (700 %) as the fundamental link to the onset of ejecta formation. Our experimental observations allow us to approximate the strength of Cu at high strains and strain rates, revealing a unique diagnostic method for use at these extreme conditions.

Copyright

Corresponding author

Email address for correspondence: buttler@lanl.gov

References

Hide All
1. Bourne, N. K. & Gray, G. T. III 2005a Computational design of recovery experiments for ductile materials. Proc. R. Soc. A 461, 32973313.
2. Bourne, N. K. & Gray, G. T. III. 2005b Soft-recovery of shocked polymers and composites. J. Phys. D 38, 36903694.
3. Buttler, W. T. 2008 Comment on ‘Accuracy limits and window corrections for photon Doppler velocimetry’ (J. Appl. Phys. 101, 013523 (2007)). J. Appl. Phys. 103, 046102.
4. Buttler, W. T., Lamoreaux, S. K., Omenetto, F. G. & Torgerson, J. R. 2004 Optical velocimetry. arXiv:physics/0409073v1.
5. Buttler, W. T., Routley, N., Hixson, R. S., King, N. S. P., Olson, R. T., Rigg, P. A., Rimmer, A. & Zellner, M. B. 2007a Method to separate and determine the amount of ejecta produced in a second material-fragmentation event. Appl. Phys. Lett. 90, 151921.
6. Buttler, W. T. & Zellner, M. B. 2007 Tin ejecta data review: toward a statistical material fragmentation model, Milestone 2478. Tech. Rep. LA-UR-07-6522, Los Alamos National Laboratory.
7. Buttler, W. T., Zellner, M. B., Olson, R. T., Rigg, P. A., Hixson, R. S., Hammerberg, J. E., Obst, A. W., Payton, J. R., Iverson, A. & Young, J. 2007b Dynamic comparisons of piezoelectric ejecta diagnostics. J. Appl. Phys. 101, 063547.
8. Buttler, W. T. & Zellner, M. B. Unpublished results gathered between 2005 and 2011.
9. Dimonte, G. & Ramaprabhu, R. 2010 Simulations and model of the nonlinear Richtmyer–Meshkov instability. Phys. Fluids 22, 014104.
10. Douence, V. M., Bai, Y., Durmus, H., Joshi, A. B., Pettersson, P.-O., Sahoo, D., Kwiatkowski, K., King, N. S., Morris, C. & Wilke, M. D. 2005 Hybrid image sensor with multiple on-chip frame storage for ultrahigh-speed imaging. Proc. SPIE 5580, 226234.
11. Forman, J. W. Jr., George, E. W. & Lewis, R. D. 1965a Feasibility study of a laser flowmeter for local velocity measurements in gas flow fields. Tech. Note #149, Teledyne Brown Engineering Co. Inc., Huntsville, AL.
12. Forman, J. W. Jr., George, E. W. & Lewis, R. D. 1965b Measurement of localized fluid flow velocities in gasses with a laser Doppler flowmeter. Appl. Phys. Lett. 7, 7778.
13. Greeff, C., Chisolm, E. & George, D. 2005 SESAME 2161: An explicit multiphase equation of state for tin. Tech. Rep. LA-UR-05-9414, Los Alamos National Laboratory.
14. King, N. S. P., Ables, E., Adams, K., Alrick, K. R., Amann, J. F., Balzar, S., Barnes, P. D. Jr., Crow, M. L., Cushing, S. B., Eddleman, J. C., Fife, T. T., Flores, P., Fujino, D., Gallegos, R. A., Gray, N. T., Hartouni, E. P., Hogan, G. E., Holmes, V. H., Jaramillo, S. A., Knudsson, J. N., London, R. K., Lopez, R. R., McDonald, T. E., McClelland, J. B., Merrill, F. E., Morley, K. B., Morris, C. L., Naivar, F. J., Parker, E. L., Park, H. S., Pazuchanics, P. D., Pillai, C., Riedel, C. M., Sarracino, J. S., Shelley, F. E. Jr., Stacy, H. L., Takala, B. E., Thompson, R., Tucker, H. E., Yates, G. J., Ziock, H.-J. & Zumbro, J. D. 1999 An 800-MeV proton radiography facility for dynamic experiments. Nucl. Instrum. Meth. A 424, 8491.
15. Mabire, C. & Hereil, P. L. 2000a Shock induced polymorphic transition and melting of tin. In Proceedings of the American Physical Society Topical Group on Shock Compression of Condensed Matter, Snowbird, Ut, 27 June–2 July 1999, vol. 505, pp. 93-96.
16. Mabire, C. & Hereil, P. L. 2000b Shock induced polymorphic transition and melting of tin up to 53 GPa (experimental study and modelling). J. Physique IV 10, 749754.
17. Merrill, F. E., Campos, E., Espinoza, C., Hogan, G., Hollander, B., Lopez, J., Mariam, F. G., Morley, D., Morris, C. L., Murray, M., Saunders, A., Schwartz, C. & Thompson, T. N. 2011 Magnifying lens for 800 MeV proton radiography. Rev. Sci. Instrum. 82, 103709.
18. Meshkov, E. E. 1969 Instability in shock-accelerated boundary separating two gasses. Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza 5, 151158.
19. Meyer, K. A. & Blewett, P. J. 1972 Numerical investigation of the stability of a shock-accelerated interface between two fluids. Phys. Fluids 15, 753759.
20. Mikaelian, K. O. 1998 Analytical approach to nonlinear Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Rev. Lett. 80, 508511.
21. Mikaelian, K. O. 2010 Analytical approach to nonlinear hydrodynamic instabilities driven by time-dependent accelerations. Phys. Rev. E 81, 016325.
22. Morris, C., Hopson, J. W. & Goldstone, P. 2006 Proton radiography. Los Alamos Science 30, 3245. http://la-science.lanl.gov/lascience30.shtml.
23. Peterson, J. H., Honnell, K. G., Greeff, C., Johnson, J. D., Boettger, J. C. & Crockett, S. D. 2012 Global equation of state for copper. In Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, Chigago, IL, USA, 26 June–1 July 2011, vol. 1426, pp. 763–766.
24. Piriz, A. R., Lopez-Cela, J. J., Tahir, N. A. & Hoffmann, D. H. H. 2008 Richtmyer–Meshkov instability in elastic–plastic media. Phys. Rev. E 78, 056401.
25. Piriz, A. R., Lopez-Cela, J. J. & Tahir, N. A. 2009 Richtmyer–Meshkov instability as a tool for evaluating material strength under extreme conditions. Nucl. Instrum. Meth. Phys. Res. A 606, 139141.
26. Preston, D. L., Tonks, D. L. & Wallace, D. C. 2003 Model of plastic deformations for extreme loading conditions. J. Appl. Phys. 93, 211220.
27. Richtmyer, R. D. 1960 Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 13, 297319.
28. Strand, O. T., Goosman, D. R., Martinez, C. & Whitworth, T. L. 2006 Compact system for high-speed velocimetry using heterodyne techniques. Rev. Sci. Instrum. 77, 083108.
29. Velikovich, A. L. & Dimonte, G. 1996 Nonlinear perturbation theory of the incompressible Richtmyer–Meshkov instability. Phys. Rev. Lett. 76, 31123115.
30. Vogan, W. S., Anderson, W. W., Grover, M., Hammerberg, J. E., King, N. S. P., Lamoreaux, S. K., Macrum, G., Morley, K. B., Rigg, P. A., Stevens, G. D., Turley, W. D., Veeser, L. R. & Buttler, W. T. 2005 Piezoelectric characterization of ejecta from shocked tin surfaces. J. Appl. Phys. 98, 113508.
31. Yeh, Y. & Cummins, H. Z. 1964 Localized fluid flow measurements with an He–Ne laser. App. Phys. Lett. 4, 176178.
32. Zellner, M. B. & Buttler, W. T. 2008 Exploring Richtmyer–Meshkov instability phenomena and ejecta cloud physics. Appl. Phys. Lett. 93, 114102.
33. Zellner, M. B., Grover, M., Hammerberg, J. E., Hixson, R. S., Iverson, A. J., Macrum, G. S., Morley, K. B., Obst, A. W., Olson, R. T., Payton, J. R., Rigg, P. A., Routley, N., Stevens, G. D., Turley, W. D., Veeser, L. & Buttler, W. T. 2007 Effects of shock breakout pressure on ejection of material from shocked tin surfaces. J. Appl. Phys. 102, 013522. Erratum: Effects of shock-breakout pressure on ejection of material from shocked tin surfaces. J. Appl. Phys. (2008) 103, 109901.
34. Zellner, M. B., Vogan-McNeil, W., Gray, G. T. III, Huerta, D. C., King, N. S. P., Neal, G. E., Valentine, S. J., Payton, J. R., Rubin, J., Stevens, G. D., Turley, W. D. & Buttler, W. T. 2008a Surface preparation methods to enhance dynamic surface property measurements of shocked metal surfaces. J. Appl. Phys. 103, 083521.
35. Zellner, M. B., Vogan-McNeil, W., Hammerberg, J. E., Hixson, R. S., Obst, A. W., Olson, R. T., Payton, J. R., Rigg, P. A., Routley, N., Stevens, G. D., Turley, W. D., Veeser, L. & Buttler, W. T. 2008b Probing the underlying physics of ejecta production from shocked Sn samples. J. Appl. Phys. 103, 123502.
36. Zhang, Q. 1998 Analytical solution of Layzer-type approach to unstable interfacial fluid mixing. Phys. Rev. Lett. 81, 33913394.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed