Skip to main content Accessibility help
×
Home

Universal mechanism for air entrainment during liquid impact

  • Maurice H. W. Hendrix (a1) (a2), Wilco Bouwhuis (a1), Devaraj van der Meer (a1), Detlef Lohse (a1) and Jacco H. Snoeijer (a1) (a3)...

Abstract

When a millimetre-sized liquid drop approaches a deep liquid pool, both the interface of the drop and the pool deform before the drop touches the pool. The build-up of air pressure prior to coalescence is responsible for this deformation. Due to this deformation, air can be entrained at the bottom of the drop during the impact. We quantify the amount of entrained air numerically, using the boundary integral method for potential flow for the drop and the pool, coupled to viscous lubrication theory for the air film that has to be squeezed out during impact. We compare our results with various experimental data and find excellent agreement for the amount of air that is entrapped during impact onto a pool. Next, the impact of a rigid sphere onto a pool is numerically investigated and the air that is entrapped in this case also matches with available experimental data. In both cases of drop and sphere impact onto a pool the numerical air bubble volume $V_{b}$ is found to be in agreement with the theoretical scaling $V_{b}/V_{drop/sphere}\sim \mathit{St}^{-4/3}$ , where $\mathit{St}$ is the Stokes number. This is the same scaling as has been found for drop impact onto a solid surface in previous research. This implies a universal mechanism for air entrainment for these different impact scenarios, which has been suggested in recent experimental work, but is now further elucidated with numerical results.

Copyright

Corresponding author

Email address for correspondence: m.h.hendrix@gmail.com

References

Hide All
Bouwhuis, W., Hendrix, M. H. W., Van Der Meer, D. & Snoeijer, J. H. 2015 Initial surface deformations during impact on a liquid pool. J. Fluid Mech. 771, 503519.
Bouwhuis, W., Van Der Veen, R. C. A., Tran, T., Keij, D. L., Winkels, K. G., Peters, I. R., Van Der Meer, D., Sun, C., Snoeijer, J. H. & Lohse, D. 2012 Maximal air bubble entrainment at liquid-drop impact. Phys. Rev. Lett. 109 (26), 264501.
Bouwhuis, W., Winkels, K. G., Peters, I. R., Brunet, P., Van Der Meer, D. & Snoeijer, J. H. 2013 Oscillating and star-shaped drops levitated by an airflow. Phys. Rev. E 88 (2), 023017.
Chen, S. & Guo, L. 2014 Viscosity effect on regular bubble entrapment during drop impact into a deep pool. Chem. Engng Sci. 109, 116.
van Dam, D. B. & Le Clerc, C. 2004 Experimental study of the impact of an ink-jet printed droplet on a solid substrate. Phys. Fluids 16 (9), 34033414.
Esmailizadeh, L. & Mesler, R. 1986 Bubble entrainment with drops. J. Colloid Interface Sci. 110 (2), 561574.
Gekle, S. & Gordillo, J. M. 2011 Compressible air flow through a collapsing liquid cavity. Intl J. Numer. Meth. Fluids 67 (11), 14561469.
Guo, Y., Wei, L., Liang, G. & Shen, S. 2014 Simulation of droplet impact on liquid film with CLSVOF. Intl Commun. Heat Mass Transfer 53, 2633.
Hendrix, M. H. W., Manica, R., Klaseboer, E., Chan, D. Y. C. & Ohl, C. D. 2012 Spatiotemporal evolution of thin liquid films during impact of water bubbles on glass on a micrometer to nanometer scale. Phys. Rev. Lett. 108 (24), 247803.
Hicks, P. D., Ermanyuk, E. V., Gavrilov, N. V. & Purvis, R. 2012 Air trapping at impact of a rigid sphere onto a liquid. J. Fluid Mech. 695, 310320.
Hicks, P. D. & Purvis, R. 2010 Air cushioning and bubble entrapment in three-dimensional droplet impacts. J. Fluid Mech. 649, 135163.
Hicks, P. D. & Purvis, R. 2011 Air cushioning in droplet impacts with liquid layers and other droplets. Phys. Fluids 23 (6), 062104.
Klaseboer, E., Chevaillier, J. P., Gourdon, C. & Masbernat, O. 2000 Film drainage between colliding drops at constant approach velocity: experiments and modeling. J. Colloid Interface Sci. 229 (1), 274285.
Klaseboer, E., Manica, R. & Chan, D. Y. C. 2014 Universal behavior of the initial stage of drop impact. Phys. Rev. Lett. 113 (19), 194501.
Korobkin, A. A., Ellis, A. S. & Smith, F. T. 2008 Trapping of air in impact between a body and shallow water. J. Fluid Mech. 611, 365394.
Leal, L. Gary 1992 Laminar Flow and Convective Transport Processes, pp. 345448. Butterworth-Heinemann.
Mandre, S., Mani, M. & Brenner, M. P. 2009 Precursors to splashing of liquid droplets on a solid surface. Phys. Rev. Lett. 102 (13), 134502.
Mani, M., Mandre, S. & Brenner, M. P. 2010 Events before droplet splashing on a solid surface. J. Fluid Mech. 647, 163185.
Marston, J. O., Vakarelski, I. U. & Thoroddsen, S. T. 2011 Bubble entrapment during sphere impact onto quiescent liquid surfaces. J. Fluid Mech. 680, 660670.
Oguz, H. N. & Prosperetti, A. 1990 Bubble entrainment by the impact of drops on liquid surfaces. J. Fluid Mech. 219, 143179.
Oguz, H. N. & Prosperetti, A. 1993 Dynamics of bubble growth and detachment from a needle. J. Fluid Mech. 257, 111145.
Pumphrey, H. C. & Elmore, P. A. 1990 Entrainment of bubbles by drop impacts. J. Fluid Mech. 220, 539567.
Saylor, J. R. & Bounds, G. D. 2012 Experimental study of the role of the Weber and capillary numbers on Mesler entrainment. AIChE J. 58 (12), 38413851.
Sun, Q., Klaseboer, E., Khoo, B. C. & Chan, D. Y. C. 2014 A robust and non-singular formulation of the boundary integral method for the potential problem. Engng Anal. Bound. Elem. 43, 117123.
Thoraval, M., Takehara, K., Etoh, T. G., Popinet, S., Ray, P., Josserand, C., Zaleski, S. & Thoroddsen, S. T. 2012 von Kármán vortex street within an impacting drop. Phys. Rev. Lett. 108 (26), 264506.
Thoroddsen, S. T., Etoh, T. G. & Takehara, K. 2003 Air entrapment under an impacting drop. J. Fluid Mech. 478, 125134.
Thoroddsen, S. T., Etoh, T. G., Takehara, K., Ootsuka, N. & Hatsuki, Y. 2005 The air bubble entrapped under a drop impacting on a solid surface. J. Fluid Mech. 545, 203212.
Thoroddsen, S. T., Thoraval, M. J., Takehara, K. & Etoh, T. G. 2012 Micro-bubble morphologies following drop impacts onto a pool surface. J. Fluid Mech. 708, 469479.
Tran, T., De Maleprade, H., Sun, C. & Lohse, D. 2013 Air entrainment during impact of droplets on liquid surfaces. J. Fluid Mech. 726, R3.
van der Veen, R. C. A., Hendrix, M. H. W., Tran, T., Sun, C., Tsai, P. A. & Lohse, D. 2014 How microstructures affect air film dynamics prior to drop impact. Soft Matt. 10 (21), 37033707.
van der Veen, R. C. A., Tran, T., Lohse, D. & Sun, C. 2012 Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry. Phys. Rev. E 85 (2), 026315.
Wang, A., Kuan, C. & Tsai, P. 2013 Do we understand the bubble formation by a single drop impacting upon liquid surface? Phys. Fluids 25 (10), 101702.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Universal mechanism for air entrainment during liquid impact

  • Maurice H. W. Hendrix (a1) (a2), Wilco Bouwhuis (a1), Devaraj van der Meer (a1), Detlef Lohse (a1) and Jacco H. Snoeijer (a1) (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed