Skip to main content Accessibility help
×
Home

Turbulent pair dispersion as a continuous-time random walk

  • Simon Thalabard (a1), Giorgio Krstulovic (a1) and Jérémie Bec (a1)

Abstract

The phenomenology of turbulent relative dispersion is revisited. A heuristic scenario is proposed, in which pairs of tracers undergo a succession of independent ballistic separations during time intervals whose lengths fluctuate. This approach suggests that the logarithm of the distance between tracers self-averages and performs a continuous-time random walk. This leads to specific predictions for the probability distribution of separations, which differ from those obtained using scale-dependent eddy-diffusivity models (e.g. in the framework of Richardson’s approach). These predictions are tested against high-resolution simulations and shed new light on the explosive separation between tracers.

Copyright

Corresponding author

Email address for correspondence: jeremie.bec@oca.eu

References

Hide All
Batchelor, G. K. 1950 The application of the similarity theory of turbulence to atmospheric diffusion. Q. J. R. Meteorol. Soc. 76, 133146.
Benveniste, D. & Drivas, T. D. 2014 Asymptotic results for backwards two-particle dispersion in a turbulent flow. Phys. Rev. E 89, 041003.
Berg, J., Lüthi, B., Mann, J. & Ott, S. 2006 Backwards and forwards relative dispersion in turbulent flow: an experimental investigation. Phys. Rev. E 74, 016304.
Biferale, L., Boffetta, G., Celani, A., Devenish, B. J., Lanotte, A. & Toschi, F. 2005 Lagrangian statistics of particle pairs in homogeneous isotropic turbulence. Phys. Fluids 17, 115101.
Bitane, R., Homann, H. & Bec, J. 2012 Timescales of turbulent relative dispersion. Phys. Rev. E 86, 045302.
Bitane, R., Homann, H. & Bec, J. 2013 Geometry and violent events in turbulent pair dispersion. J. Turbul. 14 (2), 2345.
Boffetta, G. & Sokolov, I. M. 2002 Relative dispersion in fully developed turbulence: the Richardson’s law and intermittency corrections. Phys. Rev. Lett. 88, 094501.
Cardy, J., Falkovich, G. & Gawedzki, K. 2008 Non-Equilibrium Statistical Mechanics and Turbulence, London Mathematical Society Lecture Note Series, vol. 355. Cambridge University Press.
Dimotakis, P. E. 2005 Turbulent mixing. Annu. Rev. Fluid Mech. 37, 329356.
Eyink, G. L. 2011 Stochastic flux freezing and magnetic dynamo. Phys. Rev. E 83, 056405.
Eyink, G. L. & Benveniste, D. 2013 Diffusion approximation in turbulent two-particle dispersion. Phys. Rev. E 88 (4), 041001.
Eyink, G. L. & Drivas, T. D.2014 Spontaneous stochasticity and anomalous dissipation for Burgers equation. Preprint, arXiv:1401.5541.
Falkovich, G., Gawȩdzki, K. & Vergassola, M. 2001 Particles and fields in fluid turbulence. Rev. Mod. Phys. 73, 913975.
Faller, A. J. 1996 A random-flight evaluation of the constants of relative dispersion in idealized turbulence. J. Fluid Mech. 316, 139161.
Hentschel, H. G. E. & Procaccia, I. 1984 Relative diffusion in turbulent media: the fractal dimension of clouds. Phys. Rev. A 29, 14611470.
Hughes, B. D. 1995 Random Walks and Random Environments. vol. 1, Clarendon.
Ilyin, V., Procaccia, I. & Zagorodny, A. 2010 Stochastic processes crossing from ballistic to fractional diffusion with memory: exact results. Phys. Rev. E 81, 030105.
Kurbanmuradov, O. & Sabelfeld, K. 1995 Stochastic Lagrangian models of relative dispersion of a pair of fluid particles in turbulent flows. Monte Carlo Meth. Applic. 1, 101136.
Obukhov, A. M. 1941 On the distribution of energy in the spectrum of turbulent flow. Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz. 5, 453466.
Ott, S. & Mann, J. 2000 An experimental investigation of the relative diffusion of particle pairs in three-dimensional turbulent flow. J. Fluid Mech. 422, 207223.
Ouellette, N. T., Xu, H., Bourgoin, M. & Bodenschatz, E. 2006 An experimental study of turbulent relative dispersion models. New J. Phys. 8, 109 (1–23).
Rast, M. P. & Pinton, J.-F. 2011 Pair dispersion in turbulence: the subdominant role of scaling. Phys. Rev. Lett. 107, 214501.
Richardson, L. F. 1926 Atmospheric diffusion shown on a distance–neighbour graph. Proc. R. Soc. Lond. A 110, 709737.
Salazar, J. P. L. C. & Collins, L. R. 2009 Two-particle dispersion in isotropic turbulent flows. Annu. Rev. Fluid Mech. 41, 405432.
Sawford, B. L. 2001 Turbulent relative dispersion. Annu. Rev. Fluid Mech. 33, 289317.
Sawford, B. L., Yeung, P. K. & Hackl, J. F. 2008 Reynolds number dependence of relative dispersion statistics in isotropic turbulence. Phys. Fluids 20 (6), 065111.
Scatamacchia, R., Biferale, L. & Toschi, F. 2012 Extreme events in the dispersions of two neighboring particles under the influence of fluid turbulence. Phys. Rev. Lett. 109, 144501.
Shlesinger, M. F., West, B. J. & Klafter, J. 1987 Lévy dynamics of enhanced diffusion: application to turbulence. Phys. Rev. Lett. 58 (11), 11001103.
Sokolov, I. M., Klafter, J. & Blumen, A. 2000 Ballistic versus diffusive pair dispersion in the Richardson regime. Phys. Rev. E 61 (3), 27172722.
Thomson, D. J. & Wilson, J. D. 2013 History of Lagrangian stochastic models for turbulent dispersion. In Lagrangian Modeling of the Atmosphere, pp. 1936. Wiley Online Library.
Yeung, P. K. 1994 Direct numerical simulation of two-particle relative diffusion in isotropic turbulence. Phys. Fluids 6 (10), 34163428.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

Turbulent pair dispersion as a continuous-time random walk

  • Simon Thalabard (a1), Giorgio Krstulovic (a1) and Jérémie Bec (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.