Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-27T21:32:18.975Z Has data issue: false hasContentIssue false

The turbulent mixing layer with an asymmetrical distribution of temperature

Published online by Cambridge University Press:  19 April 2006

Claude Béguier
Affiliation:
Institut de Mécanique Statistique de la Turbulence, Marseille, France
Louis Fulachier
Affiliation:
Institut de Mécanique Statistique de la Turbulence, Marseille, France
James F. Keffer
Affiliation:
Department of Mechanical Engineering, University of Toronto, Canada

Abstract

An experimental programme has been carried out to examine the spread of heat as a passive scalar contaminant in a turbulent shear flow. The situation involves a slightly heated two-dimensional jet expanding into a quiescent medium on one side and a uniform stream with velocity equal to that of the warm jet on the other. Thus the developed flow is a typical mixing layer with an asymmetric mean temperature profile superimposed on it. Measurements of the mean and fluctuating velocity and temperature fields show the existence of a region where the production of temperature fluctuations is negative. Spectral analysis in this zone indicates a separation of large and small wavenumber components of the cospectrum into two regimes. The sign of the high-frequency portion is consistent with gradient-transport concepts while the low-frequency component is of opposite sign. From this it is inferred that the large eddies are mainly responsible for the negative production. A mathematical model has been developed to describe the transport within this region.

Type
Research Article
Copyright
© 1978 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Béguier, C. 1965a J. Méc. 4, 319.
Béguier, C. 1965b C. R. Acad. Sci. Paris A 260, 5460.
Béguier, C. 1969 C. R. Acad. Sci. Paris A 268, 69.
Béguier, C. 1971 thesis, Université de Provence, Marseille.
Béguier, C., Fulachier, L., Keffer, J. F. & Dumas, R. 1975 C. R. Acad. Sci. Paris B 280, 493.
Béguier, C., Rey, C., Dumas, R. & Astier, M. 1973 C. R. Acad. Sci. Paris A 277, 475.
Brodkey, R. S., Nychas, S. G., Taraba, J. L. & Wallace, J. M. 1973 Phys. Fluids 16, 2010.
Brown, G. L. & Roshko, A. 1974 J. Fluid Mech. 64, 775.
Davies, A. E., Keffer, J. F. & Baines, W. D. 1975 Phys. Fluids 18, 770.
Deardorff, J. W. 1966 J. Atmos. Sci. 23, 503.
Dumas, R. 1964 Publ. Sci. Tech. Minist. Air no. 404.
Dumas, R., Fulachier, L. & Arzoumanian, E. 1972 C. R. Acad. Sci. Paris A 274, 267.
Erian, F. F. & Eskinazi, S. 1964 Univ. Syracuse, Res. I.N.S.T. Rep. ME 937-6410 F.
Eskinazi, S. & Erian, F. F. 1969 Phys. Fluids 12, 1988.
Eskinazi, S. & Yeh, H. 1956 J. Aero. Sci. 23, 23.
Favre, A. 1965 J. Méc. 4, 361.
Favre, A. 1975 Proc. 5th Can. Cong. Appl. Mech., Fredericton, G-3.
Fulachier, L., Giovanangeli, J. P., Dumas, R., Kovasznay, L. S. G. & Favre, A. 1974a C. R. Acad. Sci. Paris A 278, 683.
Fulachier, L., Giovanangeli, J. P., Dumas, R., Kovasznay, L. S. G. & Favre, A. 1974b C. R. Acad. Sci. Paris A 278, 999.
Fulachier, L. & Dumas, R. 1976 J. Fluid Mech. 77, 257.
Gee, M. T. & Bradshaw, P. 1962 Aero. Res. Counc. R. & M. no. 3252.
Gosse, J. & Schiestel, R. 1975 Int. J. Heat Mass Transfer 18, 743.
Hanjalić, K. & Launder, B. E. 1971 Imp. Coll. Rep. BL-TN-B-41.
Hinze, J. O. 1970 Dutch J. Appl. Sci. Res. 22, 163.
Hinze, J. O., Sonnenberg, R. E. & Builtjes, P. J. H. 1974 Appl. Sci. Res. 29, 1.
Keffer, J. F., Olsen, G. F. & Kawall, J. G. 1977 J. Fluid Mech. 79, 595.
Kjellström, B. & Hedberg, S. 1966 Roy. Inst. Tech. Stockholm Rep. AE 243.
Launder, B. E. 1968 Imp. Coll. Rep. BL-TN-2.
Liepman, H. W. & Laufer, J. 1947 N.A.C.A. Tech. Note no. 1257.
Mathieu, J. & Tailland, A. 1965 C. R. Acad. Sci. Paris A 261, 2282.
Palmer, M. D. & Keffer, J. F. 1972 J. Fluid Mech. 53, 593.
Sunyach, M. 1971 thesis, Université de Lyon.
Townsend, A. A. 1956 The Structure of Turbulent Shear Flow, chap. 5. Cambridge University Press.
Verollet, E. 1972 thesis, Université de Provence, Marseille.
Wilson, D. J. 1974 Phys. Fluids 17, 674.
Winant, C. D. & Browand, F. K. 1974 J. Fluid Mech. 63, 237.
Wygnanski, I. & Fiedler, H. 1970 J. Fluid Mech. 41, 327.
Yule, A. J. 1975 J. Fluid Mech. 72, 481.