Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-23T10:34:01.305Z Has data issue: false hasContentIssue false

Transitional stages of thin air film entrapment in drop-pool impact events

Published online by Cambridge University Press:  25 August 2020

Shahab Mirjalili*
Affiliation:
Department of Mechanical Engineering, Stanford University, Stanford, CA94305, USA
Ali Mani
Affiliation:
Department of Mechanical Engineering, Stanford University, Stanford, CA94305, USA
*
Email address for correspondence: ssmirjal@stanford.edu

Abstract

During the early stages of drop-pool impacts, an air film is temporarily entrapped between the liquid bodies. At low impact velocities, this film can become highly stretched, allowing for contact-free penetration of the drop into the pool. The elongated film never ruptures for the lowest impact velocities, resulting in drop bouncing. For higher impact velocities, the elongated film ruptures to entrain hundreds of micro-bubbles in a process known as Mesler entrainment. At even higher impact velocities, an elongated film never forms as early contact entraps a shorter disk-type film which retracts to one or few central bubbles. In this work we use numerical simulations of water drop-pool impacts along with theoretical analyses to discover a capillary transition that prevents early contact. This transition allows the drop to penetrate further into the pool and provides a pathway for the formation of elongated films. Since Mesler entrainment is only possible if early contact is prevented, we use the occurrence of transition as a criterion to provide an upper boundary for the Mesler entrainment regime. We observe from low $We$ simulations that after transition, the drop spreads on the pool surface, during which the minimum film thickness increases and the film regularizes. Interestingly, we observe the formation of kinks between the centre of the film and the spreading fronts, and find asymptotic scaling laws governing the film thickness. Lastly, by examining the role of liquid viscosity, we shed light on transition dynamics for different liquids.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agbaglah, G., Thoraval, M.-J., Thoroddsen, S. T., Zhang, L. V., Fezzaa, K. & Deegan, R.D. 2015 Drop impact into a deep pool: vortex shedding and jet formation. J. Fluid Mech. 764, R1.CrossRefGoogle Scholar
Bouwhuis, W., van der Veen, , Roeland, C. A., Tran, T., Keij, D. L., Winkels, K. G., Peters, I.R., van der Meer, D., Sun, C., Snoeijer, J. H. & Lohse, D. 2012 Maximal air bubble entrainment at liquid-drop impact. Phys. Rev. Lett. 109 (26), 264501.CrossRefGoogle ScholarPubMed
Carroll, K. & Mesler, R. 1981 Part 2: bubble entrainment by drop-formed vortex rings. AIChE J. 27, 853856.CrossRefGoogle Scholar
Chan, W. H. R., Mirjalili, S., Jain, S. S, Urzay, J., Mani, A. & Moin, P. 2019 Birth of microbubbles in turbulent breaking waves. Phys. Rev. Fluids 4 (10), 100508.CrossRefGoogle Scholar
Chan, W. H. R., Urzay, J. & Moin, P. 2018 Subgrid-scale modeling for microbubble generation amid colliding water surfaces. arXiv:1811.11898.Google Scholar
Couder, Y., Fort, E., Gautier, C.-H. & Boudaoud, A. 2005 From bouncing to floating: noncoalescence of drops on a fluid bath. Phys. Rev. Lett. 94 (17), 177801.CrossRefGoogle ScholarPubMed
Czerski, H., Twardowski, M., Zhang, X. & Vagle, S. 2011 Resolving size distributions of bubbles with radii less than 30 $\mathrm {\mu }$m with optical and acoustical methods. J. Geophys. Res. 116 (C7).CrossRefGoogle Scholar
Deka, H., Ray, B., Biswas, G., Dalal, A., Tsai, P.-H. & Wang, A.-B. 2017 The regime of large bubble entrapment during a single drop impact on a liquid pool. Phys. Fluids 29 (9), 092101.CrossRefGoogle Scholar
Deng, Q., Anilkumar, A. V. & Wang, T. G. 2007 The role of viscosity and surface tension in bubble entrapment during drop impact onto a deep liquid pool. J. Fluid Mech. 578, 119138.CrossRefGoogle Scholar
Dhir, V. K. 1998 Boiling heat transfer. Annu. Rev. Fluid Mech. 30 (1), 365401.CrossRefGoogle Scholar
Dorbolo, S., Reyssat, E., Vandewalle, N. & Quéré, D. 2005 Aging of an antibubble. Europhys. Lett. 69 (6), 966970.CrossRefGoogle Scholar
Duchemin, L. & Josserand, C. 2011 Curvature singularity and film-skating during drop impact. Phys. Fluids 23 (9), 091701.CrossRefGoogle Scholar
Esmailizadeh, L. & Mesler, R. 1986 Bubble entrainment with drops. J. Colloid Interface Sci. 110, 561574.CrossRefGoogle Scholar
Guo, Y., Wei, L., Liang, G. & Shen, S. 2014 Simulation of droplet impact on liquid film with CLSVOF. Intl Commun. Heat Mass Transfer 53, 2633.CrossRefGoogle Scholar
Hendrix, M. H. W., Bouwhuis, W., Vandermeer, D., Lohse, D. & Snoeijer, J. H. 2016 Universal mechanism for air entrainment during liquid impact. J. Fluid Mech. 789, 708725.CrossRefGoogle Scholar
Hicks, P. D. & Purvis, R. 2010 Air cushioning and bubble entrapment in three-dimensional droplet impacts. J. Fluid Mech. 649, 135163.CrossRefGoogle Scholar
Hicks, P. D. & Purvis, R. 2011 Air cushioning in droplet impacts with liquid layers and other droplets. Phys. Fluids 23 (6), 062104.CrossRefGoogle Scholar
Josserand, C., Ray, P. & Zaleski, S. 2016 Droplet impact on a thin liquid film: anatomy of the splash. J. Fluid Mech. 802, 775805.CrossRefGoogle Scholar
Josserand, C. & Zaleski, S. 2003 Droplet splashing on a thin liquid film. Phys. Fluids 15 (6), 16501657.CrossRefGoogle Scholar
Klaseboer, E., Manica, R. & Chan, D. Y. C. 2014 Universal behavior of the initial stage of drop impact. Phys. Rev. Lett. 113 (19), 194501.CrossRefGoogle ScholarPubMed
Kolinski, J. M., Mahadevan, L. & Rubinstein, S. M. 2014 Lift-off instability during the impact of a drop on a solid surface. Phys. Rev. Lett. 112 (13), 134501.CrossRefGoogle ScholarPubMed
Kolinski, J. M., Rubenstein, S. M., Mandre, S., Brenner, M. P., Weitz, D. A. & Mahadevan, L. 2012 Skating on a film of air: drops impacting on a surface. Phys. Rev. Lett. 108 (7), 074503.CrossRefGoogle ScholarPubMed
Liang, G., Guo, Y., Shen, S. & Yang, Y. 2014 Crown behavior and bubble entrainment during a drop impact on a liquid film. Theor. Comput. Fluid Dyn. 28, 159170.CrossRefGoogle Scholar
Liang, G. & Mudawar, I. 2016 Review of mass and momentum interactions during drop impact on a liquid film. Intl J. Heat Mass Transfer 101, 577599.CrossRefGoogle Scholar
Liow, J. & Cole, D. 2007 Bubble entrapment mechanisms during the impact of a water drop. Proceedings of the 16th Australasian Fluid Mechanics Conference, 866869.Google Scholar
Mandre, S., Mani, M. & Brenner, M. P. 2009 Precursors to splashing of liquid droplets on a solid surface. Phys. Rev. Lett. 102, 134502.CrossRefGoogle ScholarPubMed
Mandre, S., Mani, M. & Brenner, M. P. 2012 The mechanism of a splash on a dry solid surface. J. Fluid Mech. 690, 148172.CrossRefGoogle Scholar
Mani, M., Mandre, S. & Brenner, M. P. 2010 Events before droplet splashing on a solid surface. J. Fluid Mech. 647, 163185.CrossRefGoogle Scholar
Melville, W. K. 1996 The role of surface-wave breaking in air-sea interaction. Annu. Rev. Fluid Mech. 28, 279321.CrossRefGoogle Scholar
Mills, B. H., Saylor, J. R. & Testik, F. Y. 2012 An experimental study of mesler entrainment on a surfactant-covered interface: the effect of drop shape and Weber number. AIChE J. 58 (1), 4658.CrossRefGoogle Scholar
Mirjalili, S., Chan, W. H. R. & Mani, A. 2018 High fidelity simulations of micro-bubble shedding from retracting thin gas films in the context of liquid-liquid impact. arXiv:1811.12352.Google Scholar
Mirjalili, S., Ivey, C. B. & Mani, A. 2020 A conservative diffuse interface method for two-phase flows with provable boundedness properties. J. Comput. Phys. 401, 109006.CrossRefGoogle Scholar
Mirjalili, S., Jain, S. S. & Dodd, M. 2017 Interface-capturing methods for two-phase flows: an overview and recent developments. Center Turbul. Res. Annu. Res. Briefs 117135.Google Scholar
Moreira, A. L. N., Moita, A. S. & Panao, M. R. 2010 Advances and challenges in explaining fuel spray impingement: how much of single droplet impact research is useful? Prog. Energy Combust. Sci. 36 (5), 554580.CrossRefGoogle Scholar
Mortazavi, M. 2016 Air entrainment and micro-bubble generation by turbulent breaking waves. PhD thesis, Stanford University.Google Scholar
Oguz, H. N. & Prosperetti, A. 1989 Surface-tension effects in the contact of liquid surfaces. J. Fluid Mech. 203, 149171.CrossRefGoogle Scholar
Oguz, H. N. & Prosperetti, A. 1990 Bubble entrainment by the impact of drops on liquid surfaces. J. Fluid Mech. 219, 143179.CrossRefGoogle Scholar
Pack, M., Hu, H., Kim, D., Zheng, Z., Stone, H. A. & Sun, Y. 2017 Failure mechanisms of air entrainment in drop impact on lubricated surfaces. Soft Matt. 13 (12), 24022409.CrossRefGoogle ScholarPubMed
Prosperetti, A. & Og̃uz, H. N. 1993 The impact of drops on liquid surfaces and the underwater noise of rain. Annu. Rev. Fluid Mech. 25, 577602.CrossRefGoogle Scholar
Pumphrey, H. C. & Crum, L. A. 1988 Acoustic Emissions Associated with Drop Impacts, 1st edn, pp. 463–483. Kluwer Academic Publishers.CrossRefGoogle Scholar
Pumphrey, H. C. & Elmore, P. A. 1990 The entrainment of bubbles by drop impacts. J. Fluid Mech. 220, 539567.CrossRefGoogle Scholar
Purvis, R. & Smith, F. T. 2005 Droplet impact on water layers: post-impact analysis and computations. Phil. Trans. R. Soc. Lond. A 363 (1830), 12091221.CrossRefGoogle ScholarPubMed
de Ruiter, J., van den Ende, D. & Mugele, F. 2015 Air cushioning in droplet impact. II. Experimental characterization of the air film evolution. Phys. Fluids 27 (1), 012105.CrossRefGoogle Scholar
de Ruiter, J., Oh, J. M., van den Ende, D. & Mugele, F. 2012 Dynamics of collapse of air films in drop impact. Phys. Rev. Lett. 108 (7), 074505.CrossRefGoogle ScholarPubMed
Salerno, E., Levoni, P. & Barozzi, G. S. 2015 Air entrainment in the primary impact of single drops on a free liquid surface. J. Phys.: Conf. Ser. 655, 012036.Google Scholar
Saylor, J. R. & Bounds, G. D. 2012 Experimental study of the role of the Weber and capillary numbers on Mesler entrainment. AIChE J. 58, 38413851.CrossRefGoogle Scholar
Shetabivash, H., Ommi, F. & Heidarinejad, G. 2014 Numerical analysis of droplet impact onto liquid film. Phys. Fluids 26, 012102.CrossRefGoogle Scholar
Sigler, J. & Mesler, R. 1990 The behavior of the gas film formed upon drop impact with a liquid surface. J. Colloid Interface Sci. 134, 459474.CrossRefGoogle Scholar
Smith, F. T., Li, L. & Wu, G. X. 2003 Air cushioning with a lubrication/inviscid balance. J. Fluid Mech. 482, 291318.CrossRefGoogle Scholar
Sundberg-Anderson, R. K. & Saylor, J. R. 2014 Mesler entrainment in alcohols. Exp. Fluids 55 (1), 1653.CrossRefGoogle Scholar
Tang, X., Saha, A., Law, C. K. & Sun, C. 2019 Bouncing drop on liquid film: dynamics of interfacial gas layer. Phys. Fluids 31 (1), 013304.CrossRefGoogle Scholar
Thoraval, M.-J., Li, Y. & Thoroddsen, S. T. 2016 Vortex-ring-induced large bubble entrainment during drop impact. Phys. Rev. E 93 (3), 033128.CrossRefGoogle ScholarPubMed
Thoraval, M. J., Takehara, K., Etoh, T. G., Popinet, S., Ray, P., Josserand, C., Zaleski, S. & Thoroddsen, S. 2012 Von Kármán vortex street within an impacting drop. Phys. Rev. Lett. 108, 264506.CrossRefGoogle Scholar
Thoroddsen, S. T., Etoh, T. G. & Takehara, K. 2003 Air entrapment under an impacting drop. J. Fluid Mech. 478, 125134.CrossRefGoogle Scholar
Thoroddsen, S. T., Thoraval, M. J., Takehara, K. & Etoh, T. G. 2012 Micro-bubble morphologies following drop impacts onto a pool surface. J. Fluid Mech. 708, 469479.CrossRefGoogle Scholar
Thorpe, S. A. 1982 On the clouds of bubbles formed by breaking wind-waves in deep water, and their role in air-sea gas transfer. Phil. Trans. R. Soc. Lond. A 304, 155210.Google Scholar
Tomita, Y., Saito, T. & Ganbara, S. 2007 Surface breakup and air bubble formation by drop impact in the irregular entrainment region. J. Fluid Mech. 588, 131152.CrossRefGoogle Scholar
Tran, T., de Maleprade, H., Sun, C. & Lohse, D. 2013 Air entrainment during impact of droplets on liquid surfaces. J. Fluid Mech. 726, R3.CrossRefGoogle Scholar
Vinje, T. & Brevig, P. 1981 Numerical simulation of breaking waves. Adv. Water Resour. 4 (2), 7782.CrossRefGoogle Scholar
Wagner, H. 1932 Über stoß-und gleitvorgänge an der oberfläche von flüssigkeiten. Z. Angew. Math. Mech. 12 (4), 193215.CrossRefGoogle Scholar
Wang, A.-B., Kuan, C.-C. & Tsai, P.-H. 2013 Do we understand the bubble formation by a single drop impacting upon liquid surface? Phys. Fluids 25 (10), 101702.CrossRefGoogle Scholar
Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C. & McGillis, W. R. 2009 Advances in quantifying air-sea gas exchange and environmental forcing. Annu. Rev. Mar. Sci. 1 (1), 213244.CrossRefGoogle Scholar
Weiss, D. A. & Yarin, A. L. 1999 Single drop impact onto liquid films: neck distortion, jetting, tiny bubble entrainment, and crown formation. J. Fluid Mech. 385, 229254.CrossRefGoogle Scholar
Wu, Z., Hao, J., Lu, J., Xu, L., Hu, G. & Floryan, J. M. 2020 Small droplet bouncing on a deep pool. Phys. Fluids 32 (1), 012107.CrossRefGoogle Scholar
Yarin, A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing$\ldots$ Annu. Rev. Fluid Mech. 38, 159192.CrossRefGoogle Scholar
Zou, J., Wang, P. F., Zhang, T. R., Fu, X. & Ruan, X. 2011 Experimental study of a drop bouncing on a liquid surface. Phys. Fluids 23 (4), 044101.CrossRefGoogle Scholar