Skip to main content Accessibility help
×
Home

Transition to chaos through period doublings of a forced oscillating cylinder in steady current

  • Liang Cheng (a1) (a2), Xiaoying Ju (a1), Feifei Tong (a1) and Hongwei An (a1)

Abstract

Transition to chaos through a cascade of period doublings of the primary $1/2$ synchronization mode is discovered in steady approaching flow around a forced inline oscillating cylinder near a plane boundary at a Reynolds number $(Re)$ of 175. The transition occurs well within the otherwise synchronized region (known as the Arnold tongue) in the frequency and amplitude space of the oscillating cylinder, creating two parameter strips of desynchronized flows within the Arnold tongue. Five orders of period doublings from mode $1/2$ to mode $16/32$ are revealed by progressively increasing the frequency resolution in the simulation. The ratio of frequency intervals of two successive period-doubling modes asymptotes towards the first Feigenbaum constant, reaching a value of 4.52 at mode of $16/32$ . Additional three-dimensional simulations demonstrate the existence of period doubling with a regular spanwise flow structure similar to regular mode B of steady flow around an isolated cylinder. Although transition to chaos through cascades of period doublings is primarily reported for the primary $1/2$ synchronization mode, it is also observed for other synchronization modes $(p/q)$ (Tang et al., J. Fluid Mech., vol. 832, 2017, pp. 146–169), where $p$ and $q$ are integers with a non-reducible $p/q$ , such as $2/3$ . The physical mechanisms responsible for the present period-doubling bifurcations and transition to chaos through cascades of period doublings are ascribed to the interaction of asymmetric vortex shedding from the cylinder (due to a geometric asymmetry) and the boundary layer developed on the plane boundary, through specifically designed numerical tests.

Copyright

Corresponding author

Email address for correspondence: xiaoying.ju@research.uwa.edu.au

References

Hide All
Al-Mdallal, Q. M., Lawrence, K. P. & Kocabiyik, S. 2007 Forced streamwise oscillations of a circular cylinder: locked-on modes and resulting fluid forces. J. Fluids Struct. 23, 681701.
Blackburn, H. M. & Henderson, R. D. 1999 A study of two-dimensional flow past an oscillating cylinder. J. Fluid Mech. 385, 255286.
Blackburn, H. M. & Sheard, G. J. 2010 On quasiperiodic and subharmonic Floquet wake instabilities. Phys. Fluids 22 (3), 031701.
Cantwell, C., Moxey, D., Comerford, A., Bolis, A., Rocco, G., Mengaldo, G., DE GRAZIA, D., Yakovlev, S., Lombard, J.-E. & Ekelschot, D. 2015 Nektar++: an open-source spectral/hp element framework. Comput. Phys. Commun. 192, 205219.
Feigenbaum, M. J.1976 Universality in complex discrete dynamics. LA-6816-PR, LASL Theoretical Division Annual Report, July 1975–September 1976. United States Energy Research and Development Administration.
Griffin, O. M. & Ramberg, S. E. 1976 Vortex shedding from a cylinder vibrating in line with an incident uniform flow. J. Fluid Mech. 75 (2), 257271.
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.
Jiang, H., Cheng, L., Draper, S. & An, H. 2017 Two- and three-dimensional instabilities in the wake of a circular cylinder near a moving wall. J. Fluid Mech. 812, 435462.
Jiang, H., Cheng, L., Draper, S., An, H. & Tong, F. 2016 Three-dimensional direct numerical simulation of wake transitions of a circular cylinder. J. Fluid Mech. 801, 353391.
Karniadakis, G. E., Israeli, M. & Orszag, S. A. 1991 High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97, 414443.
Konstantinidis, E. & Bouris, D. 2016 Vortex synchronization in the cylinder wake due to harmonic and non-harmonic perturbations. J. Fluid Mech. 804, 248277.
Lei, C., Cheng, L., Armfield, S. W. & Kavanagh, K. 2000 Vortex shedding suppression for flow over a circular cylinder near a plane boundary. Ocean Engng 10 (27), 11091127.
Leontini, J. S., Lo Jacono, D. & Thompson, M. C. 2011 A numerical study of an inline oscillating cylinder in a free stream. J. Fluid Mech. 688, 551568.
Leontini, J. S., Lo Jacono, D. & Thompson, M. C. 2013 Wake states and frequency selection of a streamwise oscillating cylinder. J. Fluid Mech. 730, 162192.
Leontini, J. S., Stewart, B., Thompson, M. & Hourigan, K. 2006 Wake state and energy transitions of an oscillating cylinder at low Reynolds number. Phys. Fluids 18, 067101.
McGehee, R. P. & Peckham, B. B. 1996 Arnold flames and resonance surface folds. Intl J. Bifurcation Chaos 6 (02), 315336.
Newman, D. J. & Karniadakis, G. E. 1997 A direct numerical simulation study of flow past a freely vibrating cable. J. Fluid Mech. 344, 95136.
Papaioannou, G. V., Yue, D. K., Triantafyllou, M. S. & Karniadakis, G. E. 2006 Evidence of holes in the Arnold tongues of flow past two oscillating cylinders. Phys. Rev. Lett. 96 (1), 014501.
Peckham, B. B. & Kevrekidis, I. G. 2002 Lighting Arnold flames: resonance in doubly forced periodic oscillators. Nonlinearity 15 (2), 405428.
Pikovsky, A., Rosenblum, M. & Kurths, J. 2001 Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press.
Rao, A., Thompson, M. C., Leweke, T. & Hourigan, K. 2013 The flow past a circular cylinder translating at different heights above a wall. J. Fluids Struct. 41, 921.
Rao, A., Thompson, M. C., Leweke, T. & Hourigan, K. 2015 Flow past a rotating cylinder translating at different gap heights along a wall. J. Fluids Struct. 57, 314330.
Tang, G., Cheng, L., Tong, F., Lu, L. & Zhao, M. 2017 Modes of synchronisation in the wake of a streamwise oscillatory cylinder. J. Fluid Mech. 832, 146169.
Williamson, C. H. K. 1996 Three-dimensional wake transition. J. Fluid Mech. 328, 345407.
Xiong, C., Cheng, L., Tong, F. & An, H. 2018 On regime C flow around an oscillating circular cylinder. J. Fluid Mech. 849, 9681008.
Xu, S. J., Zhou, Y. & Wang, M. H. 2006 A symmetric binary-vortex street behind a longitudinally oscillating cylinder. J. Fluid Mech. 556, 2743.
Zhang, H. Q., Fey, U., Noack, B. R., König, M. & Eckelmann, H. 1995 On the transition of the cylinder wake. Phys. Fluids 7 (4), 779794.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Transition to chaos through period doublings of a forced oscillating cylinder in steady current

  • Liang Cheng (a1) (a2), Xiaoying Ju (a1), Feifei Tong (a1) and Hongwei An (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.