Skip to main content Accessibility help

Trajectory of a synthetic jet issuing into high-Reynolds-number turbulent boundary layers

  • Tim Berk (a1), Nicholas Hutchins (a2), Ivan Marusic (a2) and Bharathram Ganapathisubramani (a1)


Synthetic jets are zero-net-mass-flux actuators that can be used in a range of flow control applications. For some applications, the scaling of the trajectory of the jet with actuation and cross-flow parameters is important. This scaling is investigated for changes in the friction Reynolds number, changes in the velocity ratio (defined as the ratio between the mean jet blowing velocity and the free-stream velocity) and changes in the actuation frequency of the jet. A distinctive aspect of this study is the high-Reynolds-number turbulent boundary layers (up to $Re_{\unicode[STIX]{x1D70F}}=12\,800$ ) of the cross-flow. To our knowledge, this is the first study to investigate the effect of the friction Reynolds number of the cross-flow on the trajectory of an (unsteady) jet, as well as the first study to systematically investigate the scaling of the trajectory with actuation frequency. A broad range of parameters is varied (rather than an in-depth investigation of a single parameter) and the results of this study are meant to indicate the relative importance of each parameter rather than the exact influence on the trajectory. Within the range of parameters explored, the critical ones are found to be the velocity ratio as well as a non-dimensional frequency based on the jet actuation frequency, the cross-flow velocity and the jet dimensions. The Reynolds number of the boundary layer is shown to have only a small effect on the trajectory. An expression for the trajectory of the jet is derived from the data, which (in the limit) is consistent with known expressions for the trajectory of a steady jet in a cross-flow.


Corresponding author

Email address for correspondence:


Hide All
Abbassi, M. R., Baars, W., Hutchins, N. & Marusic, I. 2017 Skin-friction drag reduction in a high-Reynolds-number turbulent boundary layer via real-time control of large-scale structures. Intl J. Heat Fluid Flow 67 (B), 3041.
Broadwell, J. & Breidenthal, R. 1984 Structure and mixing of a transverse jet in incompressible flow. J. Fluid Mech. 148, 405412.
Cater, J. E. & Soria, J. 2002 The evolution of round zero-net-mass-flux jets. J. Fluid Mech. 472, 167200.
Chauhan, K. A., Monkewitz, P. A. & Nagib, H. M. 2009 Criteria for assessing experiments in zero pressure gradient boundary layers. Fluid Dyn. Res. 41, 021404.
Dandois, J., Garnier, E. & Sagaut, P. 2007 Numerical simulation of active separation control by a synthetic jet. J. Fluid Mech. 574, 2558.
Davitian, J., Hendrickson, C., M’Closkey, R. T. & Karagozian, A. R. 2010 Strategic control of transverse jet shear layer instabilities. AIAA J. 48 (9), 21452156.
Eroglu, A. & Breidenthal, R. E. 2001 Structure, penetration, and mixing of pulsed jets in crossflow. AIAA J. 39 (3), 417423.
Fric, T. & Roshko, A. 1994 Vortical structure in the wake of a transverse jet. J. Fluid Mech. 279, 147.
Gharib, M., Rambod, E. & Shariff, K. 1998 A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121140.
Hussain, A. & Reynolds, W. 1970 The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech. 41, 241258.
Hutchins, N., Nickels, T. B., Marusic, I. & Chong, M. S. 2009 Hot-wire spatial resolution issues in wall-bounded turbulence. J. Fluid Mech. 635, 103136.
Jabbal, M. & Zhong, S. 2008 The near wall effect of synthetic jets in a boundary layer. Intl J. Heat Fluid Flow 29 (1), 119130.
Jabbal, M. & Zhong, S. 2010 Particle image velocimetry measurements of the interaction of synthetic jets with a zero-pressure gradient laminar boundary layer. Phys. Fluids 22 (6), 063603.
Johari, H. 2006 Scaling of fully pulsed jets in crossflow. AIAA J. 44 (11), 27192725.
Johari, H., Pacheco-Tougas, M. & Hermanson, J. C. 1999 Penetration and mixing of fully modulated turbulent jets in crossflow. AIAA J. 37 (7), 842850.
Karagozian, A. R. 1986 An analytical model for the vorticity associated with a transverse jet. AIAA J. 24 (3), 429436.
Karagozian, A. R. 2014 The jet in crossflow. Phys. Fluids 26, 101303.
Keffer, J. F. & Baines, W. D. 1962 The round turbulent jet in a cross-wind. J. Fluid Mech. 15 (4), 481496.
Kim, W., Kim, C. & Jung, K. J. 2012 Separation control characteristics of synthetic jets depending on exit configuration. AIAA J. 50 (3), 559570.
Klewicki, J. 2010 Reynolds number dependence, scaling, and dynamics of turbulent boundary layers. Trans. ASME J. Fluids Engng 132 (9), 094001.
Lim, T. T., Lua, K. B. & Thet, K. 2008 Does Kutta lift exist on a vortex ring in a uniform cross flow? Phys. Fluids 20 (5), 051701.
Mahesh, K. 2013 The interaction of jets with crossflow. Annu. Rev. Fluid Mech. 45 (1), 379407.
Margason, R. J. 1993 Fifty years of jet in cross flow research. In AGARD, Computational and Experimental Assessment of Jets in Cross Flow, AGARD–CP–534, Advisory Group for Aerospace Research and Development.
Marusic, I., Mathis, R. & Hutchins, N. 2010 Predictive model for wall-bounded turbulent flow. Science 329 (5988), 193196.
M’Closkey, R. T., King, J. M., Cortelezzi, L. & Karagozian, A. R. 2002 The actively controlled jet in crossflow. J. Fluid Mech. 452, 325335.
Megerian, S., Davitian, J., Alves, B. & Karagozian, A. R. 2007 Transverse-jet shear-layer instabilities. Part 1. Experimental studies. J. Fluid Mech. 593, 93129.
Miller, D. N., Yagle, P. J., Bender, E. E. & Smith, B. R. 2001 A computational investigation of pulsed injection into a confined expanding crossflow. In 15th AIAA Computational Fluid Dynamics Conference, Anaheim, CA, pp. 20013026. American Institute of Aeronautics and Astronautics.
Muldoon, F. & Acharya, S. 2009 DNS study of pulsed film cooling for enhanced cooling effectiveness. Intl J. Heat Mass Transfer 52, 31183127.
Muppidi, S. & Mahesh, K. 2005 Study of trajectories of jets in crossflow using direct numerical simulations. J. Fluid Mech. 530, 81100.
Narayanan, S., Barooah, P. & Cohen, J. M. 2003 Dynamics and control of an isolated jet in crossflow. AIAA J. 41 (12), 23162330.
Nickels, T. B., Marusic, I., Hafez, S. & Chong, M. S. 2005 Evidence of the k 1 -1 law in a high-Reynolds-number turbulent boundary layer. Phys. Rev. Lett. 95 (7), 074501.
O’Farrell, C. & Dabiri, J. O. 2014 Pinch-off of non-axisymmetric vortex rings. J. Fluid Mech. 740, 6196.
Rathnasingham, R. & Breuer, K. S. 2003 Active control of turbulent boundary layers. J. Fluid Mech. 495, 209233.
Sau, R. & Mahesh, K. 2008 Dynamics and mixing of vortex rings in crossflow. J. Fluid Mech. 604, 389409.
Shapiro, S. R., King, J. M., M’Closkey, R. T. & Karagozian, A. R. 2006 Optimization of controlled jets in crossflow. AIAA J. 44 (6), 12921298.
Shuster, J., Pink, R., McEligot, D. & Smith, D. 2005 The interaction of a circular synthetic jet with a cross-flow boundary layer. In 35th AIAA Fluid Dynamics Conference and Exhibit, Toronto, ON. American Institute of Aeronautics and Astronautics.
Smith, B. L. & Glezer, A. 1998 The formation and evolution of synthetic jets. Phys. Fluids 10 (9), 22812297.
Smith, D. R. 2002 Interaction of a synthetic jet with a crossflow boundary layer. AIAA J. 40 (11), 22772288.
Smith, S. H. & Mungal, M. G. 1998 Mixing, structure and scaling of the jet in crossflow. J. Fluid Mech. 357, 83122.
Smits, A. J., McKeon, B. J. & Marusic, I. 2011 High Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43 (1), 353375.
Van Buren, T. & Amitay, M. 2016 Comparison between finite-span steady and synthetic jets issued into a quiescent fluid. Exp. Therm. Fluid Sci. 75, 1624.
Van Buren, T., Whalen, E. & Amitay, M. 2014 Vortex formation of a finite-span synthetic jet: effect of rectangular orifice geometry. J. Fluid Mech. 745, 180207.
Van Buren, T., Leong, C. M., Whalen, E. & Amitay, M. 2016 Impact of orifice orientation on a finite-span synthetic jet interaction with a crossflow. Phys. Fluids 28, 037106.
Vermeulen, P. J., Chin, C. & Yu, W. K. 1990 Mixing of an acoustically pulsed air jet with a confined crossflow. J. Propul. 6 (6), 777783.
Wu, J. M., Vakili, A. D. & Yu, F. M. 1988 Investigation of the interacting flow of nonsymmetric jets in crossflow. AIAA J. 26 (8), 940947.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed