Skip to main content Accessibility help
×
Home

The tidally induced bottom boundary layer in a rotating frame: similarity of turbulence

  • KEI SAKAMOTO (a1) (a2) and KAZUNORI AKITOMO (a3)

Abstract

To investigate turbulent properties of the tidally induced bottom boundary layer (TBBL) in a rotating frame, we performed three-dimensional numerical experiments under unstratified conditions, varying the temporal Rossby number Rot = |σ*/f*|, where σ* and f* are the tidal frequency and the Coriolis parameter, respectively. The vertical profiles of the time-averaged currents and stresses showed good similarity and coincided well with the turbulent Ekman layer, when they were normalized by the modified ‘outer’ scales, the frictional velocity u*τ, T* = 1/|f* + σ*| and δ* = u*τ/|f* + σ*| for the velocity, time and length scales (σ* is positive when the tidal ellipse rotates anticlockwise). This means that the similarity in turbulent statistics is universally applicable to the TBBL in the world's ocean except near the equator. Although strong inertial waves contaminated the perturbation field when Rot ~ 1 and masked the similarity, the apparent diffusivity κ*ap estimated by tracer experiments again showed similarity, since the inertial waves did not affect the mixing process in the present experiments. Thus, κ*ap can be represented in terms of the three external parameters: the latitude (f*), the tidal frequency (σ*) and the tidal amplitude (u*τ). The obtained scaling of u*τ δ* = u*τ2/|f*+σ*| for κ*ap suggests that effective mixing may occur when Rot ~ 1, i.e. near the critical latitude.

Copyright

References

Hide All
Aelbrecht, D., D'Hieres, G. C. & Renouard, D. 1999 Experimental study of the Ekman layer instability in steady or oscillating flows. Continental Shelf Res. 19, 18511867.
Akhavan, R., Kamm, R. D. & Shapiro, A. H. 1991 a An investigation of transition to turbulence in bounded oscillatory Stokes flows. Part 1. Experiments. J. Fluid Mech. 225, 395422.
Akhavan, R., Kamm, R. D. & Shapiro, A. H. 1991 b An investigation of transition to turbulence in bounded oscillatory Stokes flows. Part 2. Numerical simulations. J. Fluid Mech. 225, 423444.
Akitomo, K. 1999 Open-ocean deep convection due to thermobaricity 2. Numerical experiments. J. Geophys. Res. 104, 52355249.
Basu, S., Porté-Agel, F., Foufoula-Georgiou, E., Vinuesa, J.-F. & Pahlow, M. 2006 Revisiting the local scaling hypothesis in stably stratified atmospheric boundary-layer turbulence: An integration of field and laboratory measurements with large-eddy simulations. Boundary-Layer Met. 119, 473500.
Coleman, G. N. 1999 Similarity statistics from a direct numerical simulation of the neutrally stratified planetary boundary layer. J. Atmos. Sci. 56, 891900.
Coleman, G. N., Ferziger, J. H. & Spalart, P. R. 1990 A numerical study of the turbulent Ekman layer. J. Fluid Mech. 213, 313348.
Coleman, G. N., Ferziger, J. H. & Spalart, P. R. 1992 Direct simulation of the stably stratified turbulent Ekman layer. J. Fluid Mech. 244, 677712.
Coles, D. 1956 The law of the wake in the turbulent boundary layer. J. Fluid Mech. 1, 191226.
Costamagna, P., Vittori, G. & Blondeaux, P. 2003 Coherent structures in oscillatory boundary layers. J. Fluid Mech. 474, 133.
Craig, P. D. 1989 A model of diurnally forced vertical current structure near 30° latitude. Continental Shelf Res. 9, 965980.
Csanady, G. T. 1967 On the “resistance law” of a turbulent Ekman layer. J. Atmos. Sci. 24, 467471.
Fahrbach, E., Harms, S., Rohardt, G., Schröder, M. & Woodgate, R. A. 2001 Flow of bottom water in the northwestern Weddell Sea. J. Geophys. Res. 106, 27612778.
Fahrbach, E., Rohardt, G., Scheele, N., Schröder, M., Strass, V. & Wisotzki, A. 1995 Formation and discharge of deep and bottom water in the northwestern Weddell Sea. J. Mar. Res. 53, 515538.
Faller, A. J. & Kaylor, R. E. 1966 A numerical study of the instability of the laminar Ekman boundary layer. J. Atmos. Sci. 23, 466480.
Foldvik, A., Gammelsrød, T., Østerhus, S., Fahrbach, E., Rohardt, G., Schröder, M., Nicholls, K. W., Padman, L. & Woodgate, R. A. 2004 Ice shelf water overflow and bottom water formation in the southern Weddell Sea. J. Geophys. Res. 109, C02015.
Foldvik, A., Middleton, J. H., Foster, T. D. 1990 The tides of the southern Weddell Sea. Deep-Sea Res. 37, 13451362.
Foster, T. D. & Carmack, E. C. 1976 Frontal zone mixing and Antarctic Bottom Water formation in the southern Weddell Sea. Deep-Sea Res. 23, 301317.
Foster, T. D., Foldvik, A. & Middleton, J. H. 1987 Mixing and bottom water formation in the shelf break region of the southern Weddell Sea. Deep-Sea Res. 34, 17711794.
Friedlander, S. 1980 An Introduction to the Mathematical Theory of Geophysical Fluid Dynamics. Elsevier.
Furevik, T. & Foldvik, A. 1996 Stability at M(2) critical latitude in the Barents Sea. J. Geophys. Res. 101, 88238837.
Gordon, A. L. 1998 Western Weddell Sea thermohaline stratification. Ocean, ice and atmosphere: Interactions at the Antarctic continental margin. Antarct. Res. Ser. 75, 215240.
Grant, W. D. & Madsen, O. S. 1986 The continental-shelf bottom boundary layer. Annu. Rev. Fluid Mech. 18, 265305.
Iida, O., Kasagi, N. & Nagano, Y. 2002 Direct numerical simulation of turbulent channel flow under stable density stratification. Intl J. Heat Mass Transfer 45, 16931703.
Jacobs, S. S. 2004 Bottom water production and its links with the thermohaline circulation. Antarct. Sci. 16, 427437.
Kulikov, E. A., Rabinovich, A. B. 2004 Barotropic and baroclinic tidal currents on the Mackenzie shelf break in the southeastern Beaufort Sea. J. Geophys. Res. 109, C05020.
LeBlond, P. H. & Mysak, L. A. 1978 Waves in the Ocean. Elsevier.
Makinson, K. 2002 Modeling tidal current profiles and vertical mixing beneath Filchner–Ronne Ice Shelf, Antarctica. J. Phys. Oceanogr. 32, 202215.
Makinson, K., Schröder, M. & Østerhus, S. 2006 Effect of critical latitude and seasonal stratification on tidal current profiles along Ronne Ice Front, Antarctica. J. Geophys. Res. 111, C03022.
Matsuno, T. 1996 Numerical integrations of the primitive equations by a simulated backward difference method. J. Met. Soc. Japan 44, 7684.
Mellor, G. L. & Yamada, T. 1982 Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys. 20, 851875.
Muench, R. D. & Gordon, A. L. 1995 Circulation and transport of water along the western Weddell Sea margin. J. Geophys. Res. 100, 1850318515.
Nakano, H. & Suginohara, N. 2002 Effects of Bottom Boundary Layer parameterization on reproducing deep and bottom waters in a world ocean model J. Phys. Oceanogr. 32, 12091227.
Nieuwstadt, F. T. M. 1984 The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci. 41, 22022216.
Nøst, E. 1994 Calculating tidal current profiles from vertically integrated models near the critical latitude in the Barents Sea. J. Geophys. Res. 99, 78857901.
Orsi, A. H., Johnson, G. C. & Bullister, J. L. 1999 Circulation, mixing and production of Antarctic Bottom Water. Progr. Oceanogr. 43, 55109.
Pereira, F. P., Beckmann, A. & Hellmer, H. H. 2002 Tidal mixing in the southern Weddell Sea: Results from a three-dimensional model. J. Phys. Oceanogr. 32, 21512170.
Prandle, D. 1982 The vertical structure of tidal currents. Geophys. Astrophys. Fluid Dyn. 22, 2949.
Robertson, R. 2001 a Internal tides and baroclinicity in the southern Weddell Sea 1. Model description. J. Geophys. Res. 106, 2700127016.
Robertson, R. 2001 b Internal tides and baroclinicity in the southern Weddell Sea 2. Effects of the critical latitude and stratification. J. Geophys. Res. 106, 2701727034.
Robertson, R., Padman, L. & Egbert, G. D. 1998 Tides in the Weddell Sea. Antarct. Res. Ser. 75, 341369.
Sakamoto, K. & Akitomo, K. 2006 Instabilities of the tidally induced bottom boundary layer in the rotating frame and their mixing effect. Dyn. Atmos. Oceans 41, 191211.
Sakamoto, K. & Akitomo, K. 2008 The tidally induced bottom boundary layer in a rotating frame: Development of the turbulent mixed layer under stratification. J. Fluid Mech. (in press).
Schmitz, W. J. 1995 On the interbasin-scale thermohaline circulation. Rev. Geophys. 33, 151173.
Soulsby, R. L. 1983 The bottom boundary layer of shelf seas. In Physical Oceanography of Coastal and Shelf Seas (ed. Johns, B.), pp. 189266. Elsevier.
Spalart, P. R. 1989 Theoretical and numerical study of a three-dimensional turbulent boundary layer. J. Fluid Mech. 205, 319340.
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.
Werner, S. R., Beardsley, R. C., Lentz, S. J., Hebert, D. L., Oakey, N. S. 2003 Observations and modelling of the tidal bottom boundary layer on the souther flank of Georges Bank. J. Geophys. Res. 108, 8005.
White, M. 1994 Tidal and subtidal variability in the sloping benthic boundary layer. J. Geophys. Res. 99, 78517864.
Zikanov, O., Slinn, D. N. & Dhanak, M. R. 2003 Large-eddy simulations of the wind-induced turbulent Ekman layer. J. Fluid Mech. 495, 343368.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed