Skip to main content Accessibility help

A three-equation model for thin films down an inclined plane

  • G. L. Richard (a1), C. Ruyer-Quil (a2) and J. P. Vila (a3)


We derive a new model for thin viscous liquid films down an inclined plane. With an asymptotic expansion in the long-wave limit, the Navier–Stokes equations and the work–energy theorem are averaged over the fluid depth. This gives three equations for the mass, momentum and energy balance which have the mathematical structure of the Euler equations of compressible fluids with relaxation source terms, diffusive and capillary terms. The three variables of the model are the fluid depth, the average velocity and a third variable called enstrophy, related to the variance of the velocity. The equations are numerically solved by classical schemes which are known to be reliable and robust. The model gives satisfactory results both for the neutral stability curves and for the depth profiles of wavy films produced by a periodical forcing or by a random noise perturbation. The numerical calculations agree fairly well with experimental measurements of Liu & Gollub (Phys. Fluids, vol. 6, 1994, pp. 1702–1712). The calculation of the wall shear stress below the waves indicates a flow reversal at the first depth minimum downstream of the main hump, in agreement with experiments of Tihon et al. (Exp. Fluids, vol. 41, 2006, pp. 79–89).


Corresponding author

Email address for correspondence:


Hide All
Abderrahmane, H. A. & Vatistas, G. H. 2007 Improved two-equation model for thin layer fluid flowing down an inclined plane problem. Phys. Fluids 19, 098106.
Alekseenko, S. V., Nakoryakov, V. E. & Pokusaev, B. G. 1985 Wave formation on vertical falling liquid films. Intl J. Multiphase Flow 11 (5), 607627.
Bach, P. & Villadsen, J. 1984 Simulation of the vertical flow of a thin, wavy film using a finite-element method. Intl J. Mass Transfer 27 (6), 815827.
Benjamin, T. B. 1957 Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2, 554574.
Benney, D. J. 1966 Long waves on liquid films. J. Math. Phys. 45, 150155.
Bresch, D., Couderc, F., Noble, P. & Vila, J. P. 2016 A generalization of the quantum Bohm identity: hyperbolic CFL condition for Euler–Korteweg equations. C. R. Math. 354 (1), 3943.
Brevdo, L., Laure, P., Dias, F. & Bridges, T. J. 1999 Linear pulse structure and signalling in a film flow on an inclined plane. J. Fluid Mech. 396, 3771.
Chakraborty, S., Nguyen, P.-K., Ruyer-Quil, C. & Bontozoglou, V. 2014 Extreme solitary waves on falling liquid films. J. Fluid Mech. 745, 564591.
Chang, H. -C., Demekhin, E. A. & Kalaidin, E. 1996 Simulation of noise-driven dynamics on a falling film. AIChE J. 42 (6), 15531568.
Chang, H. -C., Demekhin, E. A. & Kopelevich, D. I. 1993 Nonlinear evolution of waves on a vertically falling film. J. Fluid Mech. 250, 433480.
Demekhin, E. A., Demekhin, I. A. & Shkadov, V. Y. 1983 Solitons in viscous films flowing down a vertical wall. Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza 4, 916.
Gavrilyuk, S. L. & Perepechko, Y. V. 1998 Variational approach to constructing hyperbolic models of two-velocity media. Prikl. Mekh. Tekh. Fiz. 39 (5), 3954.
Joo, S. W., Davis, S. H. & Bankoff, S. G. 1991 Long-wave instabilities of heated falling films: two-dimensional theory of uniform layers. J. Fluid Mech. 230, 117146.
Kalliadasis, S., Ruyer-Quil, C., Scheid, B. & Velarde, M. G. 2012 Falling Liquid Films. Springer.
Kapitza, P. L. 1948a Wave flow of thin layers of a viscous fluid: Part I. Free flow. Zh. Exper. Teor. Fiz. 18, 318; (in Russian).
Kapitza, P. L. 1948b Wave flow of thin layers of a viscous fluid: Part II. Fluid flow in the presence of continuous gas flow and heat transfer. Zh. Exper. Teor. Fiz. 18, 1928; (in Russian).
Kapitza, P. L. & Kapitza, S. P. 1949 Wave flow of thin viscous liquid films. Zh. Exper. Teor. Fiz. 19, 105.
Kuramoto, Y. & Tsuzuki, T. 1976 Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Prog. Theor. Phys. 55 (2), 356369.
Lavalle, G., Vila, J. P., Blanchard, G., Laurent, C. & Charru, F. 2015 A numerical reduced model for thin liquid films sheared by a gas flow. J. Comput. Phys. 301, 119140.
Liu, J. & Gollub, J. P. 1994 Solitary wave dynamics of film flows. Phys. Fluids 6, 17021712.
Liu, J., Paul, J. D. & Gollub, J. P. 1993 Measurements of the primary instabilities of film flows. J. Fluid Mech. 250, 69101.
Luchini, P. & Charru, F. 2010 Consistent section-averaged equations of quasi-one-dimensional laminar flow. J. Fluid Mech. 656, 337341.
Malamataris, N. A., Vlachogiannis, M. & Bontozoglou, V. 2002 Solitary waves on inclined films: flow structure and binary interactions. Phys. Fluids 14 (3), 10821094.
Mudunuri, R. R. & Balakotaiah, V. 2006 Solitary waves on thin falling films in the very low forcing frequency limit. AIChE J. 52 (12), 39954003.
Nakoryakov, V. E., Pokusaev, B. G., Alekseenko, S. V. & Orlov, V. V. 1977 Instantaneous velocity profile in a wavy fluid film. Inzh.-Fiz. Zh. 33 (3), 399404.
Nguyen, L. T. & Balakotaiah, V. 2000 Modeling and experimental studies of wave evolution on free falling viscous films. Phys. Fluids 12 (9), 22362256.
Noble, P. & Vila, J. P. 2013 Thin power-law film down an inclined plane: consistent shallow-water models and stability under large-scale perturbations. J. Fluid Mech. 735, 2960.
Noble, P. & Vila, J. P. 2014 Stability theory for difference approximations of Euler Korteweg equations and application to thin film flows. SIAM J. Numer. Anal. 52 (6), 27702791.
Nosoko, T. & Miyara, A. 2004 The evolution and subsequent dynamics of waves on a vertically falling liquid film. Phys. Fluids 16 (4), 11181126.
Novbari, E. & Oron, A. 2009 Energy integral method model for the nonlinear dynamics of an axisymetric thin liquid film falling on a vertical cylinder. Phys. Fluids 21, 062107.
Ooshida, T. 1999 Surface equation of falling film flows with moderate Reynolds number and large but finite Weber number. Phys. Fluids 11 (11), 32473269.
Ostapenko, V. V. 2014 Conservation laws of shallow water theory and the Galilean relativity principle. J. Appl. Ind. Math. 8 (2), 274286.
Pumir, A., Manneville, P. & Pomeau, Y. 1983 On solitary waves running down an inclined plane. J. Fluid Mech. 135, 2750.
Ramaswamy, B., Chippada, S. & Joo, S. W. 1996 A full-scale numerical study of interfacial instabilities in thin-film flows. J. Fluid Mech. 325, 163194.
Richard, G. L. & Gavrilyuk, S. L. 2012 A new model of roll waves: comparison with Brock’s experiments. J. Fluid Mech. 698, 374405.
Richard, G. L. & Gavrilyuk, S. L. 2013 The classical hydraulic jump in a model of shear shallow-water flows. J. Fluid Mech. 725, 492521.
Roberts, A. J. 1996 Low-dimensional models of thin film fluid dynamics. Phys. Lett. A 212, 6371.
Ruyer-Quil, C. & Manneville, P. 2000 Improved modelling of flows down inclined planes. Eur. Phys. J. B 15, 357369.
Ruyer-Quil, C. & Manneville, P. 2002 Further accuracy and convergence results on the modelling of flows down inclined planes by weighted-residual approximations. Phys. Fluids 14, 170183.
Ruyer-Quil, C. & Manneville, P. 2005 On the speed of solitary waves running down a vertical wall. J. Fluid Mech. 531, 181190.
Salamon, T. R., Armstrong, R. C. & Brown, R. A. 1994 Traveling waves on vertical films: numerical analysis using the finite element method. Phys. Fluids 6, 22022220.
Shkadov, V. Y. 1967 Wave flow regimes of a thin layer of viscous fluid subject to gravity. Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza 1, 4351; (English translation in Fluid Dyn., 2, 29–34), 1970 (Faraday Press, NY).
Sivashinsky, G. I. 1977 Nonlinear analysis of hydrodynamic instability in laminar flames. I: derivation of basic equations. Acta Astronaut. 4 (11), 11771206.
Teshukov, V. M. 2007 Gas-dynamics analogy for vortex free-boundary flows. J. Appl. Mech. Tech. Phys. 48 (3), 303309.
Tihon, J., Serifi, K., Argyriadi, K. & Bontozoglou, V. 2006 Solitary waves on inclined films: their characteristics and the effects on wall shear stress. Exp. Fluids 41, 7989.
Trifonov, Y. Y. 2012 Stability and bifurcations of the wavy film flow down a vertical plate: the results of integral approaches and full-scale computations. Fluid Dyn. Res. 44, 031418.
Usha, R. & Uma, B. 2004 Modeling of stationary waves on a thin viscous film down an inclined plane at high Reynolds numbers and moderate Weber numbers using energy integral method. Phys. Fluids 16 (7), 26792696.
Yih, C. S. 1963 Stability of liquid flow down an inclined plane. Phys. Fluids 6, 321334.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

A three-equation model for thin films down an inclined plane

  • G. L. Richard (a1), C. Ruyer-Quil (a2) and J. P. Vila (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed