Skip to main content Accessibility help

Three-dimensional vibrations of multilayered hollow spheres submerged in a complex fluid

  • B. Wu (a1) (a2) (a3) (a4), Y. Gan (a4), E. Carrera (a3) and W. Q. Chen (a1) (a2) (a4) (a5)


Fluid–structure interaction is fundamental to the characteristics of the induced flows due to the motion of structures in fluids and also is crucial to the performance of submerged structures. This paper presents a three-dimensional analytical study of the intrinsic free vibration of an elastic multilayered hollow sphere interacting with an exterior non-Newtonian fluid medium. The fluid is assumed to be characterized by a compressible linear viscoelastic model accounting for both the shear and compressional relaxation processes. For small-amplitude vibrations, the equations governing the viscoelastic fluid can be linearized, which are then solved by introducing appropriate potential functions. The solid is assumed to exhibit a particular material anisotropy, i.e. spherical isotropy, which includes material isotropy as a special case. The equations governing the anisotropic solid are solved in spherical coordinates using the state-space formalism, which finally establishes two separate transfer relations correlating the state vectors at the innermost surface with those at the outermost surface of the multilayered hollow sphere. By imposing the continuity conditions at the fluid–solid interface, two separate analytical characteristic equations are derived, which characterize two independent classes of vibration. Numerical examples are finally conducted to validate the theoretical derivation as well as to investigate the effects of various factors, including fluid viscosity and compressibility, fluid viscoelasticity, solid anisotropy and surface effect, as well as solid intrinsic damping, on the vibration characteristics of the submerged hollow sphere. Particularly, our theoretically predicted vibration frequencies and quality factors of gold nanospheres with intrinsic damping immersed in water agree exceptionally well with the available experimentally measured results. The reported analytical solution is truly and fully three-dimensional, covering from the purely radial breathing mode to the torsional mode to any general spheroidal mode as well as being applicable to various simpler situations, and hence can be a broad-spectrum benchmark in the study of fluid–structure interaction.


Corresponding author

Email addresses for correspondence:,


Hide All
Babincová, M., Sourivong, P. & Babinec, P. 2000 Resonant absorption of ultrasound energy as a method of HIV destruction. Med. Hypotheses 55, 450451.
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Behara, S., Borazjani, I. & Sotiropoulos, F. 2011 Vortex-induced vibrations of an elastically mounted sphere with three degrees of freedom at Re = 300: hysteresis and vortex shedding modes. J. Fluid Mech. 686, 426450.10.1017/jfm.2011.339
Boyko, E., Bercovici, M. & Gat, A. D. 2017 Viscous-elastic dynamics of power-law fluids within an elastic cylinder. Phys. Rev. Fluids 2, 073301.
Cammarata, R. C. 1997 Surface and interface stress effects on interfacial and nanostructured materials. Mater. Sci. Engng A 237 (2), 180184.10.1016/S0921-5093(97)00128-7
Chakraborty, D., Hartland, G. V., Pelton, M. & Sader, J. E. 2018 When can the elastic properties of simple liquids be probed using high-frequency nanoparticle vibrations? J. Phys. Chem. C 122 (25), 1334713353.
Chakraborty, D., van Leeuwen, E., Pelton, M. & Sader, J. E. 2013 Vibration of nanoparticles in viscous fluids. J. Phys. Chem. C 117 (16), 85368544.10.1021/jp401141b
Chakraborty, D. & Sader, J. E. 2015 Constitutive models for linear compressible viscoelastic flows of simple liquids at nanometer length scales. Phys. Fluids 27 (5), 052002.10.1063/1.4919620
Chang, W. S., Wen, F., Chakraborty, D., Su, M. N., Zhang, Y., Shuang, B., Nordlander, P., Sader, J. E., Halas, N. J. & Link, S. 2015 Tuning the acoustic frequency of a gold nanodisk through its adhesion layer. Nat. Commun. 6, 7022.
Chen, W. Q. & Ding, H. J. 2001 Free vibration of multi-layered spherically isotropic hollow spheres. Intl J. Mech. Sci. 43 (3), 667680.10.1016/S0020-7403(00)00044-8
Chen, W. Q. & Ding, H. J. 2002 On free vibration of a functionally graded piezoelectric rectangular plate. Acta Mech. 153 (3/4), 207216.10.1007/BF01177452
Chen, W. Q., Wang, X. & Ding, H. J. 1999 Free vibration of a fluid-filled hollow sphere of a functionally graded material with spherical isotropy. J. Acoust. Soc. Am. 106 (5), 25882594.
Chen, W. Q., Wu, B., Zhang, C. L. & Zhang, Ch. 2014 On wave propagation in anisotropic elastic cylinders at nanoscale: surface elasticity and its effect. Acta Mech. 225 (10), 27432760.
Cohen, H., Shah, A. H. & Ramakrishnan, C. V. 1972 Free vibrations of a spherically isotropic hollow sphere. Acta Acust. 26 (6), 329333.
Crut, A., Maioli, P., Del Fatti, N. & Vallée, F. 2009 Anisotropy effects on the time-resolved spectroscopy of the acoustic vibrations of nanoobjects. Phys. Chem. Chem. Phys. 11 (28), 58825888.
Crut, A., Maioli, P., Del Fatti, N. & Vallée, F. 2015 Acoustic vibrations of metal nano-objects: time-domain investigations. Phys. Rep. 549, 143.10.1016/j.physrep.2014.09.004
Dey, A. A., Modarres-Sadeghi, Y. & Rothstein, J. P. 2017 Experimental observation of viscoelastic fluid–structure interactions. J. Fluid Mech. 813, R5.10.1017/jfm.2017.15
Ding, H. J. & Chen, W. Q. 1996 Natural frequencies of an elastic spherically isotropic hollow sphere submerged in a compressible fluid medium. J. Sound Vib. 192 (1), 173198.
Ding, H. J. & Chen, W. Q. 1998 Exact shell theory analysis of free vibrations of submerged thin spherical shells. Intl J. Solids Struct. 35 (33), 43814389.
Ding, H. J., Chen, W. Q. & Zhang, L. C. 2006 Elasticity of Transversely Isotropic Materials. Springer.
Dowell, E. H. & Hall, K. C. 2001 Modeling of fluid–structure interaction. Annu. Rev. Fluid Mech. 33, 445490.10.1146/annurev.fluid.33.1.445
Faran, J. J. 1951 Sound scattering by solid cylinders and spheres. J. Acoust. Soc. Am. 23 (4), 405418.10.1121/1.1906780
Galstyan, V., Pak, O. S. & Stone, H. A. 2015 A note on the breathing mode of an elastic sphere in Newtonian and complex fluids. Phys. Fluids 27, 032001.10.1063/1.4914045
Gao, T., Howard, H. H. & Ponte Castañeda, P. 2011 Rheology of a suspension of elastic particles in a viscous shear flow. J. Fluid Mech. 687, 209237.10.1017/jfm.2011.347
Guz, A. N. 1980 Hydroelasticity problems for viscous compressible liquids in a spherical coordinate system. Sov. Appl. Mech. 16, 937943.10.1007/BF00884872
Hou, G., Wang, J. & Layton, A. 2012 Numerical methods for fluid–structure interaction – a review. Commun. Comput. Phys. 12 (2), 337377.10.4208/cicp.291210.290411s
Howe, M. S 1998 Acoustics of Fluid–Structure Interactions. Cambridge University Press.
Hsueh, C. C., Gordon, R. & Rottler, J. 2018 Dewetting during terahertz vibrations of nanoparticles. Nano Lett. 18 (2), 773777.10.1021/acs.nanolett.7b03984
Janela, J., Moura, A. & Sequeira, A. 2010 A 3D non-Newtonian fluid–structure interaction model for blood flow in arteries. J. Comput. Appl. Maths 234 (9), 27832791.10.1016/
Jiang, J. Q., Zhu, J. & Chen, W. Q. 2019 Dispersion curves of magneto-electro-elastic imperfect cylinders filled with fluid. Math. Mech. Solids 24 (1), 195211.
Junger, J. C. 1952a Sound scattering by thin elastic shells. J. Acoust. Soc. Am. 24 (4), 366373.
Junger, J. C. 1952b Vibrations of elastic shells in a fluid medium and the associated radiation of sound. Trans. ASME J. Appl. Mech. 19, 439445.
Junger, J. C. & Feit, D. 1986 Sound, Structures, and Their Interaction. MIT Press.
Khaderi, S. N. & Onck, P. R. 2012 Fluid–structure interaction of three-dimensional magnetic artificial cilia. J. Fluid Mech. 708, 303328.
Lai, W. M., Krempl, E. & Rubin, D. 2009 Introduction to Continuum Mechanics. Butterworth-Heinemann.
Lamb, H. 1881 On the vibrations of an elastic sphere. Proc. Lond. Math. Soc. s1‐13 (1), 189212.
Lauga, E. & Powers, T. R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601.
Li, G. J. & Ardekani, A. M. 2015 Undulatory swimming in non-Newtonian fluids. J. Fluid Mech. 784, R4.
Liao, S. J. 2003 On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet. J. Fluid Mech. 488, 189212.
Liu, T. M., Chen, H. P., Wang, L. T., Wang, J. R., Luo, T. N., Chen, Y. J., Liu, S. I. & Sun, C. K. 2009 Microwave resonant absorption of viruses through dipolar coupling with confined acoustic vibrations. Appl. Phys. Lett. 94, 043902.
Muller, D. E. 1956 A method for solving algebraic equations using an automatic computer. Math. Tables Other Aids to Comput. 10, 208215.
Nasouri, B., Khot, A. & Elfring, G. J. 2017 Elastic two-shpere swimmer in Stokes flow. Phys. Rev. Fluids 2, 043101.
Païdoussis, M. P. 2003 Fluid–Structure Interactions: Slender Structures and Axial Flow, vol. 2. Academic Press.
Pelton, M., Chakraborty, D., Malachosky, E., Guyot-Sionnest, P. & Sader, J. E. 2013 Viscoelastic flows in simple liquids generated by vibrating nanostructures. Phys. Rev. Lett. 111, 244502.10.1103/PhysRevLett.111.244502
Pelton, M., Wang, Y., Gosztola, D. & Sader, J. E. 2011 Mechanical damping of longitudinal acoustic oscillations of metal nanoparticles in solution. J. Phys. Chem. C 115 (48), 2373223740.
Quintanilla, F. H., Fan, Z., Lowe, M. J. S. & Craster, R. V. 2015 Guided waves’ dispersion curves in anisotropic viscoelastic single- and multi-layered media. Proc. R. Soc. Lond. A 471, 20150268.10.1098/rspa.2015.0268
Rajamuni, M. M., Thompson, M. C. & Hourigan, K. 2018 Transverse flow-induced vibrations of a sphere. J. Fluid Mech. 837, 931966.
Ruijgrok, P. V., Zijlstra, P., Tchebotareva, A. L. & Orrit, M. 2012 Damping of acoustic vibrations of single gold nanoparticles optically trapped in water. Nano Lett. 12 (2), 10631069.
Sareen, A., Zhao, J., Lo Jacono, D., Sheridan, J., Hourigan, K. & Thompson, M. C. 2018 Vortex-induced vibration of a rotating sphere. J. Fluid Mech. 837, 258292.10.1017/jfm.2017.847
Saviot, L., Netting, C. H. & Murray, D. B. 2007 Damping by bulk and shear viscosity of confined acoustic phonons for nanostructures in aqueous solution. J. Phys. Chem. B 111 (25), 74577461.
Timoshenko, S. P. & Goodier, J. N. 1973 Theory of Elasticity, 3rd edn. McGraw-Hill.
Wu, B., Chen, W. Q. & Zhang, Ch. 2018 On free vibration of piezoelectric nanospheres with surface effect. Mech. Adv. Mater. Struct. 25 (13), 11011114.
Wu, B., Su, Y. P., Chen, W. Q. & Zhang, Ch. 2017 On guided circumferential waves in soft electroactive tubes under radially inhomogeneous biasing fields. J. Mech. Phys. Solids 99, 116145.
Wu, B., Zhang, C. L., Chen, W. Q. & Zhang, Ch. 2015 Surface effects on anti-plane shear waves propagating in magneto-electro-elastic nanoplates. Smart Mater. Struct. 24 (9), 095017.10.1088/0964-1726/24/9/095017
Yong, W. A. 2014 Newtonian limit of Maxwell fluid flows. Arch. Rat. Mech. Anal. 214 (3), 913922.
Yu, K., Major, T. A., Chakraborty, D., Devadas, M. S., Sader, J. E. & Hartland, G. V. 2015 Compressible viscoelastic liquid effects generated by the breathing modes of isolated metal nanowires. Nano Lett. 15 (6), 39643970.10.1021/acs.nanolett.5b00853
Zhu, J., Chen, W. Q., Ye, G. R. & Fu, J. Z. 2013 Waves in fluid-filled functionally graded piezoelectric hollow cylinders: a restudy based on the reverberation-ray matrix formulation. Wave Motion 50 (3), 415427.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Type Description Title
Supplementary materials

Wu et al. supplementary material
Wu et al. supplementary material

 Unknown (526 KB)
526 KB

Three-dimensional vibrations of multilayered hollow spheres submerged in a complex fluid

  • B. Wu (a1) (a2) (a3) (a4), Y. Gan (a4), E. Carrera (a3) and W. Q. Chen (a1) (a2) (a4) (a5)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed