Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-28T18:39:48.256Z Has data issue: false hasContentIssue false

Three-dimensional soft streaming

Published online by Cambridge University Press:  10 January 2024

Songyuan Cui
Affiliation:
Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Yashraj Bhosale
Affiliation:
Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Mattia Gazzola*
Affiliation:
Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
*
Email address for correspondence: mgazzola@illinois.edu

Abstract

Viscous streaming is an efficient rectification mechanism to exploit flow inertia at small scales for fluid and particle manipulation. It typically entails a fluid vibrating around an immersed solid feature that, by concentrating stresses, modulates the emergence of steady flows of useful topology. Motivated by its relevance in biological and artificial settings characterized by soft materials, recent studies have theoretically elucidated, in two dimensions, the impact of body elasticity on streaming flows. Here, we generalize those findings to three dimensions, via the minimal case of an immersed soft sphere. We first improve existing solutions for the rigid-sphere limit, by considering previously unaccounted terms. We then enable body compliance, exposing a three-dimensional, elastic streaming process available even in Stokes flows. Such effect, consistent with two-dimensional analyses but analytically distinct, is validated against direct numerical simulations and shown to translate to bodies of complex geometry and topology, paving the way for advanced forms of flow control.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, D., Mao, X., Juluri, B.K. & Huang, T.J. 2009 A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles. Microfluid. Nanofluid. 7 (5), 727731.CrossRefGoogle Scholar
Anand, V. & Christov, I.C. 2020 Transient compressible flow in a compliant viscoelastic tube. Phys. Fluids 32 (11), 112014.CrossRefGoogle Scholar
Bertelsen, A., Svardal, A. & Tjøtta, S. 1973 Nonlinear streaming effects associated with oscillating cylinders. J. Fluid Mech. 59 (3), 493511.CrossRefGoogle Scholar
Bhosale, Y., Parthasarathy, T. & Gazzola, M. 2020 Shape curvature effects in viscous streaming. J. Fluid Mech. 898, A13.CrossRefGoogle Scholar
Bhosale, Y., Parthasarathy, T. & Gazzola, M. 2021 A remeshed vortex method for mixed rigid/soft body fluid–structure interaction. J. Comput. Phys. 444, 110577.CrossRefGoogle Scholar
Bhosale, Y., Parthasarathy, T. & Gazzola, M. 2022 a Soft streaming – flow rectification via elastic boundaries. J. Fluid Mech. 945, R1.CrossRefGoogle Scholar
Bhosale, Y., Upadhyay, G., Cui, S., Chan, F.K. & Gazzola, M. 2023 Pyaxisymflow: an open-source software for resolving flow-structure interaction of 3d axisymmetric mixed soft/rigid bodies in viscous flows. Software package published via Zenodo. Version 0.0.1.Google Scholar
Bhosale, Y., Vishwanathan, G., Upadhyay, G., Parthasarathy, T., Juarez, G. & Gazzola, M. 2022 b Multicurvature viscous streaming: flow topology and particle manipulation. Proc. Natl Acad. Sci. 119 (36), e2120538119.CrossRefGoogle ScholarPubMed
Bower, A.F. 2009 Applied Mechanics of Solids. CRC Press.CrossRefGoogle Scholar
Chan, F.K., Bhosale, Y., Parthasarathy, T. & Gazzola, M. 2022 Three-dimensional geometry and topology effects in viscous streaming. J. Fluid Mech. 933, A53.CrossRefGoogle Scholar
Chen, Y. & Lee, S. 2014 Manipulation of biological objects using acoustic bubbles: a review. Integr. Comp. Biol. 54 (6), 959968.CrossRefGoogle ScholarPubMed
Chong, K., Kelly, S.D., Smith, S. & Eldredge, J.D. 2013 Inertial particle trapping in viscous streaming. Phys. Fluids 25 (3), 033602.CrossRefGoogle Scholar
Dou, Z., Hong, L., Li, Z., Chan, F.K., Bhosale, Y., Aydin, O., Juarez, G., Saif, M.T.A., Chamorro, L.P. & Gazzola, M. 2022 An in vitro living system for flow rectification. Phys. Rev. X. (submitted) arXiv:2210.14479.Google Scholar
Gazzola, M., Van Rees, W.M. & Koumoutsakos, P. 2012 C-start: optimal start of larval fish. J. Fluid Mech. 698, 518.CrossRefGoogle Scholar
Holtsmark, J., Johnsen, I., Sikkeland, T. & Skavlem, S. 1954 Boundary layer flow near a cylindrical obstacle in an oscillating, incompressible fluid. J. Acoust. Soc. Am. 26 (1), 2639.CrossRefGoogle Scholar
Klotsa, D., Baldwin, K.A., Hill, R.J.A., Bowley, R.M. & Swift, M.R. 2015 Propulsion of a two-sphere swimmer. Phys. Rev. Lett. 115 (24), 248102.CrossRefGoogle ScholarPubMed
Kotas, C.W., Yoda, M. & Rogers, P.H. 2007 Visualization of steady streaming near oscillating spheroids. Exp. Fluids 42 (1), 111121.CrossRefGoogle Scholar
Lane, C.A. 1955 Acoustical streaming in the vicinity of a sphere. J. Acoust. Soc. Am. 27 (6), 10821086.CrossRefGoogle Scholar
Liu, R.H., Yang, J., Pindera, M.Z., Athavale, M. & Grodzinski, P. 2002 Bubble-induced acoustic micromixing. Lab on a Chip 2 (3), 151157.CrossRefGoogle ScholarPubMed
Longuet-Higgins, M.S. 1998 Viscous streaming from an oscillating spherical bubble. Proc. R. Soc. Lond. A 454 (1970), 725742.CrossRefGoogle Scholar
Lutz, B.R., Chen, J. & Schwartz, D.T. 2003 Microfluidics without microfabrication. Proc. Natl Acad. Sci. 100 (8), 43954398.CrossRefGoogle ScholarPubMed
Lutz, B.R., Chen, J. & Schwartz, D.T. 2005 Microscopic steady streaming eddies created around short cylinders in a channel: flow visualization and Stokes layer scaling. Phys. Fluids 17 (2), 023601.CrossRefGoogle Scholar
Lutz, B.R., Chen, J. & Schwartz, D.T. 2006 Hydrodynamic tweezers: 1. Noncontact trapping of single cells using steady streaming microeddies. Anal. Chem. 78 (15), 54295435.CrossRefGoogle ScholarPubMed
Marmottant, P. & Hilgenfeldt, S. 2003 Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 423 (6936), 153156.CrossRefGoogle ScholarPubMed
Marmottant, P. & Hilgenfeldt, S. 2004 A bubble-driven microfluidic transport element for bioengineering. Proc. Natl Acad. Sci. 101 (26), 95239527.CrossRefGoogle ScholarPubMed
Parthasarathy, T., Chan, F.K. & Gazzola, M. 2019 Streaming-enhanced flow-mediated transport. J. Fluid Mech. 878, 647662.CrossRefGoogle Scholar
Rednikov, A.Y. & Sadhal, S.S. 2011 Acoustic/steady streaming from a motionless boundary and related phenomena: generalized treatment of the inner streaming and examples. J. Fluid Mech. 667, 426462.CrossRefGoogle Scholar
Rednikov, A.Y., Zhao, H., Sadhal, S.S. & Trinh, E.H. 2006 Steady streaming around a spherical drop displaced from the velocity antinode in an acoustic levitation field. Q. J. Mech. Appl. Maths 59 (3), 377397.CrossRefGoogle Scholar
Riley, N. 1966 On a sphere oscillating in a viscous fluid. Q. J. Mech. Appl. Maths 19 (4), 461472.CrossRefGoogle Scholar
Riley, N. 1998 Acoustic streaming. Theor. Comput. Fluid Dyn. 10 (1), 349356.CrossRefGoogle Scholar
Riley, N. 2001 Steady streaming. Annu. Rev. Fluid Mech. 33 (1), 4365.CrossRefGoogle Scholar
Sadhal, S.S. 2012 Acoustofluidics 13: analysis of acoustic streaming by perturbation methods. Lab on a Chip 12 (13), 22922300.CrossRefGoogle ScholarPubMed
Sadhal, S.S., Laurell, T. & Lenshof, A. 2014 Analysis of acoustic streaming by perturbation methods. In Microscale Acoustofluidics (ed. T. Laurell & A. Lenshof), pp. 256–311. Royal Society of Chemistry.CrossRefGoogle Scholar
Spelman, T.A. & Lauga, E. 2017 Arbitrary axisymmetric steady streaming: flow, force and propulsion. J. Engng Maths 105 (1), 3165.CrossRefGoogle Scholar
Thameem, R., Rallabandi, B. & Hilgenfeldt, S. 2017 Fast inertial particle manipulation in oscillating flows. Phys. Rev. Fluids 2 (5), 052001.CrossRefGoogle Scholar
Wang, C., Jalikop, S.V. & Hilgenfeldt, S. 2011 Size-sensitive sorting of microparticles through control of flow geometry. Appl. Phys. Lett. 99 (3), 034101.CrossRefGoogle Scholar
Wang, C.-Y. 1965 The flow field induced by an oscillating sphere. J. Sound Vib. 2 (3), 257269.CrossRefGoogle Scholar
Supplementary material: File

Cui et al. supplementary material

Cui et al. supplementary material
Download Cui et al. supplementary material(File)
File 1.3 MB