Skip to main content Accessibility help

Thermoacoustic instability as mutual synchronization between the acoustic field of the confinement and turbulent reactive flow

  • Samadhan A. Pawar (a1), Akshay Seshadri (a1), Vishnu R. Unni (a1) and R. I. Sujith (a1)


Thermoacoustic instability is the result of a positive coupling between the acoustic field in the duct and the heat release rate fluctuations from the flame. Recently, in several turbulent combustors, it has been observed that the onset of thermoacoustic instability is preceded by intermittent oscillations, which consist of bursts of periodic oscillations amidst regions of aperiodic oscillations. Quantitative analysis of the intermittency route to thermoacoustic instability has been performed hitherto using the pressure oscillations alone. We perform experiments on a laboratory-scale bluff-body-stabilized turbulent combustor with a backward-facing step at the inlet to obtain simultaneous data of acoustic pressure and heat release rate fluctuations. With this, we show that the onset of thermoacoustic instability is a phenomenon of mutual synchronization between the acoustic pressure and the heat release rate signals, thus emphasizing the importance of the coupling between these non-identical oscillators. We demonstrate that the stable operation corresponds to desynchronized aperiodic oscillations, which, with an increase in the mean velocity of the flow, transition to synchronized periodic oscillations. In between these states, there exists a state of intermittent phase synchronized oscillations, wherein the two oscillators are synchronized during the periodic epochs and desynchronized during the aperiodic epochs of their oscillations. Furthermore, we discover two different types of limit cycle oscillations in our system. We notice a significant increase in the linear correlation between the acoustic pressure and the heat release rate oscillations during the transition from a lower-amplitude limit cycle to a higher-amplitude limit cycle. Further, we present a phenomenological model that qualitatively captures all of the dynamical states of synchronization observed in the experiment. Our analysis shows that the times at which vortices that are shed from the inlet step reach the bluff body play a dominant role in determining the behaviour of the limit cycle oscillations.


Corresponding author

Email address for correspondence:


Hide All
Abarbanel, H. 1996 Analysis of Observed Chaotic Data. Springer.
Ananthkrishnan, N., Deo, S. & Culick, F. E. 2005 Reduced-order modeling and dynamics of nonlinear acoustic waves in a combustion chamber. Combust. Sci. Technol. 177 (2), 221248.
Balusamy, S., Li, L. K., Han, Z., Juniper, M. P. & Hochgreb, S. 2015 Nonlinear dynamics of a self-excited thermoacoustic system subjected to acoustic forcing. Proc. Combust. Inst. 35 (3), 32293236.
Bellows, B., Hreiz, A. & Lieuwen, T. 2008 Nonlinear interactions between forced and self-excited acoustic oscillations in premixed combustor. J. Propul. Power 24 (3), 628631.
Blasius, B., Amit, H. & Lewi, S. 1999 Complex dynamics and phase synchronization in spatially extended ecological systems. Nature 399, 354359.
Blekhman, I. I., Landa, P. S. & Rosenblum, M. G. 1995 Synchronization and chaotization in interacting dynamical systems. Appl. Mech. Rev. 48, 733752.
Blevins, R. D. 1985 The effect of sound on vortex shedding from cylinders. J. Fluid Mech. 161, 217237.
Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L. & Zhou, C. S. 2002 The synchronization of chaotic systems. Phys. Rep. 366 (1), 1101.
Bove, I., Boccaletti, S., Bragard, J., Kurths, J. & Mancini, H. 2004 Frequency entrainment of nonautonomous chaotic oscillators. Phys. Rev. E 69 (1), 016208.
Broda, J. C., Seo, S., Santoro, R. J., Shirhattikar, G. & Yang, V. 1998 An experimental study of combustion dynamics of a premixed swirl injector. Proc. Combust. Inst. 27 (2), 18491856.
Cao, L. 1997 Practical method for determining the minimum embedding dimension of a scalar time series. Physica D 110 (1), 4350.
Chakravarthy, S. R., Sivakumar, R. & Shreenivasan, O. J. 2007 Vortex-acoustic lock-on in bluff-body and backward-facing step combustors. Sadhana 32 (1–2), 145154.
Crump, J. E., Schadow, K. C., Yanq, V. & Culick, F. E. C. 1986 Longitudinal combustion instabilities in ramjet engines: identification of acoustic modes. J. Propul. Power 2, 105109.
Culick, F. E. C. 1976 Nonlinear behavior of acoustic waves in combustion chambers – I. Acta Astron. 3 (9), 715734.
Culick, F. E. C. 1994 Some recent results for nonlinear acoustics in combustion chambers. AIAA J. 32 (1), 146169.
Datta, S., Mondal, S., Mukhopadhyay, A., Sanyal, D. & Sen, S. 2009 An investigation of nonlinear dynamics of a thermal pulse combustor. Combust. Theor. Model. 13 (1), 1738.
Dowling, A. P. 1997 Nonlinear self-excited oscillations of a ducted flame. J. Fluid Mech. 346, 271290.
Eckmann, J. P., Kamphorst, S. O. & Ruelle, D. 1987 Recurrence plots of dynamical systems. Europhys. Lett. 4 (9), 973977.
Fraser, A. M. & Swinney, H. L. 1986 Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33 (2), 1134.
Fujisaka, H. & Yamada, T. 1983 Stability theory of synchronized motion in coupled-oscillator systems. Prog. Theor. Phys. 69 (1), 3247.
Gabor, D. 1946 Theory of communication. J. Inst. Electr. Engng 93 (26), 429441.
Gonzalez-Miranda, J. M. 2002 Amplitude envelope synchronization in coupled chaotic oscillators. Phys. Rev. E 65 (3), 036232.
Gotoda, H., Nikimoto, H., Miyano, T. & Tachibana, S. 2011 Dynamic properties of combustion instability in a lean premixed gas-turbine combustor. Chaos 21, 013124.
Gotoda, H., Shinoda, Y., Kobayashi, M. & Okuno, Y. 2014 Detection and control of combustion instability based on the concept of dynamical system theory. Phys. Rev. E 89, 022910.
Green, S. I. 1995 Vortex–structure interaction. In Fluid Vortices, chap. XII, pp. 533574. Kluwer Academic.
Griffin, O. M. & Hall, M. S. 1991 Review – vortex shedding lock-on and flow control in bluff body wakes. Trans. ASME J. Fluids Engng 113 (4), 526537.
Griffin, O. M. & Ramberg, S. E. 1974 The vortex street wakes of vibrating cylinders. J. Fluid Mech. 66, 553576.
Guethe, F., Guyot, D., Singla, G., Noiray, N. & Schuermans, B. 2012 Chemiluminescence as diagnostic tool in the development of gas turbines. Appl. Phys. B 107 (3), 619636.
Guethe, F. & Schuermans, B. 2007 Phase-locking in post-processing for pulsating flames. Meas. Sci. Technol. 18 (9), 3036.
Gunnoo, H., Abcha, N. & Ezersky, A. 2016 Frequency lock-in and phase synchronization of vortex shedding behind circular cylinder due to surface waves. Phys. Lett. A 380 (7), 863868.
Heagy, J. F., Carroll, T. L. & Pecora, L. M. 1994 Synchronous chaos in coupled oscillator systems. Phys. Rev. E 50 (3), 1874.
Ikeda, Y., Kojima, J. & Hashimoto, H. 2002 Local chemiluminescence spectra measurements in a high-pressure laminar methane/air premixed flame. Proc. Combust. Inst. 29, 14951501.
Jahnke, C. C. & Culick, F. E. 1994 Application of dynamical systems theory to nonlinear combustion instabilities. J. Propul. Power 10 (4), 508517.
Kabiraj, L., Saurabh, A., Wahi, P. & Sujith, R. I. 2012a Route to chaos for combustion instability in ducted laminar premixed flames. Chaos 22, 023129.
Kabiraj, L. & Sujith, R. I. 2012 Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout. J. Fluid Mech. 713, 376397.
Kabiraj, L., Sujith, R. I. & Wahi, P. 2012b Investigating the dynamics of combustion-driven oscillations leading to lean blowout. Fluid Dyn. Res. 44, 031408.
Kashinath, K., Waugh, I. C. & Juniper, M. P. 2014 Nonlinear self-excited thermoacoustic oscillations of a ducted premixed flame: bifurcations and routes to chaos. J. Fluid Mech. 761, 399430.
Keller, J. O., Vaneveld, L., Korschelt, D., Hubbard, G. L., Ghoniem, A. F., Daily, J. W. & Oppenheim, A. K. 1982 Mechanism of instabilities in turbulent combustion leading to flashback. AIAA J. 20 (2), 254262.
Kocarev, L. & Parlitz, U. 1995 General approach for chaotic synchronization with application to communication. Phys. Rev. Lett. 74, 50285031.
Lakshmanan, M. & Senthilkumar, D. V. 2011 Dynamics of Nonlinear Time-delay Systems. Springer.
Lei, S. & Turan, A. 2009 Nonlinear/chaotic behaviour in thermo-acoustic instability. Combust. Theor. Model. 13 (3), 541557.
Leon, G. 2001 Synchronization and rhythmic processes in physiology. Nature 410, 277284.
Lieuwen, T. & Yang, V. 2005 Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling. American Institute of Aeronautics and Astronautics.
Lieuwen, T. C. 2002 Experimental investigation of limit cycle oscillations in an unstable gas turbine combustor. J. Propul. Power 18, 6167.
Lieuwen, T. C. 2003a Modeling premixed combustion–acoustic wave interactions: a review. J. Propul. Power 19 (5), 765781.
Lieuwen, T. C. 2003b Statistical characteristics of pressure oscillations in a premixed combustor. J. Sound Vib. 260 (1), 317.
Lieuwen, T. C. 2005 Online combustor stability margin assessment using dynamic pressure data. Trans. ASME: J. Engng Gas Turbines Power 127 (3), 478482.
Macquisten, M. A. & Dowling, A. P. 1993 Low-frequency combustion oscillations in a model afterburner. Combust. Flame 94 (3), 253264.
Marwan, N. 2011 How to avoid potential pitfalls in recurrence plot based data analysis. Intl J. Bifurcation Chaos 21 (04), 10031017.
Marwan, N., Romano, M. C., Thiel, M. & Kurths, J. 2007 Recurrence plots for the analysis of complex systems. Phys. Rep. 438 (5), 237329.
Matveev, K. I. & Culick, F. E. C. 2003 A model for combustion instability involving vortex shedding. Combust. Sci. Technol. 175, 10591083.
McManus, K. R., Poinsot, T. & Candel, S. M. 1993 A review of active control of combustion instabilities. Prog. Energy Combust. Sci. 16, 129.
Mondal, S., Unni, V. R. & Sujith, R. I. 2017 Onset of thermoacoustic instability in turbulent combustors: an emergence of synchronized periodicity through formation of chimera-like states. J. Fluid Mech. 811, 659681.
Murugesan, M. & Sujith, R. I. 2015a Combustion noise is scale-free: transition from scale-free to order at the onset of thermoacoustic instability. J. Fluid Mech. 772, 225245.
Murugesan, M. & Sujith, R. I. 2015b Intermittency in combustion dynamics. In 51st AIAA/SAE/ASEE Joint Propulsion Conference. AIAA Paper 2015-3967.
Nair, V. & Sujith, R. I. 2013 Identifying homoclinic orbits in the dynamics of intermittent signals through recurrence quantification. Chaos 23, 033136.
Nair, V. & Sujith, R. I. 2014 Multifractality in combustion noise: predicting an impending instability. J. Fluid Mech. 747, 635655.
Nair, V. & Sujith, R. I. 2015 A reduced-order model for the onset of combustion instability: physical mechanisms for intermittency and precursors. Proc. Combust. Inst. 35 (3), 31933200.
Nair, V., Thampi, G., Karuppasamy, S., Gopalan, S. & Sujith, R. I. 2013 Loss of chaos in combustion noise as a precursor for impending instability. Intl J. Spray Combust. Diag. 5, 273290.
Nair, V., Thampi, G. & Sujith, R. I. 2014 Intermittency route to thermoacoustic instability in turbulent combustors. J. Fluid Mech. 756, 470487.
Noiray, N. & Schuermans, B. 2012 Theoretical and experimental investigations on damper performance for suppression of thermoacoustic oscillations. J. Sound Vib. 331 (12), 27532763.
Osipov, G. V., Hu, B., Zhou, C., Ivanchenko, M. V. & Kurths, J. 2003 Three types of transitions to phase synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 91 (2), 024101.
Pawar, S. A., Vishnu, R., Vadivukkarasan, M., Panchagnula, M. V. & Sujith, R. I. 2016 Intermittency route to combustion instability in a laboratory spray combustor. Trans. ASME: J. Engng Gas Turbines Power 138 (4), 041505.
Pikovsky, A., Rosenblum, M. & Kurths, J. 2003 Synchronization: A Universal Concept in Nonlinear Science. Cambridge University Press.
Poinsot, T. J., Trouve, A. C., Veynante, D. P., Candel, S. M. & Esposito, E. J. 1987 Vortex-driven acoustically coupled combustion instabilities. J. Fluid Mech. 177, 265292.
Putnam, A. A. 1971 Combustion-Driven Oscillations in Industry. Elsevier.
Pyragas, K. 1998 Properties of generalized synchronization of chaos. Nonlinear Anal. Model. 3, 129.
Rayleigh, J. S. W. 1878 The explanation of certain acoustic phenomena. Nature 18 (455), 319321.
Rogers, D. E. 1956 A mechanism for high-frequency oscillation in ramjet combustors and afterburners. Jet Propul. 26 (6), 456462.
Romano, M. C., Thiel, M., Kurths, J., Kiss, I. Z. & Hudson, J. L. 2005 Detection of synchronization for non-phase-coherent and non-stationary data. Europhys. Lett. 71 (3), 466.
Rosenblum, M. G., Pikovsky, A. S. & Kurths, J. 1996 Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76 (11), 1804.
Rosenblum, M. G., Pikovsky, A. S. & Kurths, J. 1997 From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 78 (22), 4193.
Roy, R. & Thornburg, K. S. Jr. 1994 Experimental synchronization of chaotic lasers. Phys. Rev. Lett. 72 (13), 20092012.
Rulkov, N. F., Sushchik, M. M., Tsingring, L. S. & Abarbanel, H. D. I. 1995 Generalized synchronition of chaos in directionally coupled chaotic systems. Phys. Rev. E 51 (2), 980.
Schadow, K. C. & Gutmark, E. 1992 Combustion instability related to vortex shedding in dump combustors and their passive control. Prog. Energy Combust. Sci. 18 (2), 117132.
Schinkel, S., Dimigen, O. & Marwan, N. 2008 Selection of recurrence threshold for signal detection. Eur. Phys. J. Spec. Top. 164 (1), 4553.
Schreiber, I. & Marek, M. 1982 Strange attractor in coupled reaction diffusion cells. Physica D 5 (2), 258272.
Seshadri, A., Nair, V. & Sujith, R. I. 2016 A reduced-order deterministic model describing intermittency route to combustion instability. Combust. Theor. Model. 20 (3), 441456.
Shanbhogue, S. J., Husain, S. & Lieuwen, T. 2009 Lean blowoff of bluff body stabilized flames: scaling and dynamics. Prog. Energy Combust. Sci. 35 (1), 98120.
Sivakumar, R. & Chakravarthy, S. R. 2008 Experimental investigation of the acoustic field in a bluff-body combustor. Intl J. Aeroacoust. 7 (3–4), 267299.
Smith, D. A. & Zukoski, E. E. 1985 Combustion instability sustained by unsteady vortex combustion. In AIAA/SAE/ASME/ASEE 21st Joint Propulsion Conference. AIAA Paper 85-1248.
Sterling, J. D. 1993 Nonlinear analysis and modelling of combustion instabilities in a laboratory combustor. Combust. Sci. Technol. 89 (1–4), 167179.
Sterling, J. D. & Zukoski, E. E.1987 Longitudinal mode combustion instabilities in a dump combustor. In 25th Aerospace Sciences Meeting, Reno, NV. AIAA Paper 87-0220.
Strahle, W. C. 1978 Combustion noise. Prog. Energy Combust. Sci. 4 (3), 157176.
Subramanian, P.2011 Dynamical systems approach to the investigation of thermoacoustic instabilities. PhD thesis, Indian Institute of Technology Madras.
Subramanian, P., Mariappan, S., Sujith, R. I. & Wahi, P. 2010 Bifurcation analysis of thermoacoustic instability in a horizontal Rijke tube. Intl J. Spray Combust. Diag. 2 (4), 325355.
Sujith, R. I., Juniper, M. P. & Schmid, P. J. 2016 Non-normality and nonlinearity in thermoacoustic instabilities. Intl J. Spray Combust. Diag. 8 (2), 119146.
Sungwoo, A., Park, C. & Rubchinsky, L. L. 2011 Detecting the temporal structure of intermittent phase locking. Phys. Rev. E 84, 016201.
Takens, F. 1980 Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick (ed. David, R. & Young, L.-S.), Lecture Notes in Mathematics, vol. 898, pp. 366381. Springer.
Thumuluru, S. K. & Lieuwen, T. 2009 Characterization of acoustically forced swirl flame dynamics. Proc. Combust. Inst. 32 (2), 28932900.
Tony, J., Gopalakrishnan, E. A., Sreelekha, E. & Sujith, R. I. 2015 Detecting deterministic nature of pressure measurements from a turbulent combustor. Phys. Rev. E 92 (6), 062902.
Unni, V. R. & Sujith, R. I. 2015 Multifractal characteristics of combustor dynamics close to lean blowout. J. Fluid Mech. 784, 3050.
Unni, V. R. & Sujith, R. I. 2015 Flame dynamics during intermittency in a turbulent combustor. Proc. Combust. Inst. 36 (3), 37913798.
Venkataraman, K. K., Preston, L. H., Simons, D. W., Lee, B. J., Lee, J. G. & Santavicca, D. A. 1999 Mechanism of combustion instability in a lean premixed dump combustor. J. Propul. Power 15 (6), 909918.
Welch, P. 1967 The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Acoust. Speech 15 (2), 7073.
Wen, W., Kiss, I. Z. & Hudson, J. L. 2001 Clustering of arrays of chaotic chemical oscillators by feedback and forcing. Phys. Rev. Lett. 86, 4954.
Wilhite, J. M., Dolan, B. J., Kabiraj, L., Gomez, R. V. & Gutmark, E. J. 2016 Analysis of combustion oscillations in a staged MLDI burner using decomposition methods and recurrence analysis. In 54th AIAA Aerospace Sciences Meeting. AIAA SciTech AIAA 2016-1156.
Williamson, C. H. K. & Roshko, A. 1988 Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct. 2, 355381.
Yalçinkaya, T. & Lai, Y. C. 1997 Phase characterization of chaos. Phys. Rev. Lett. 79 (20), 3885.
Yu, H. K., Trouve, A. & Daily, J. W. 1991 Low-frequency pressure oscillations in a model ramjet combustor. J. Fluid Mech. 232, 4772.
Zdravkovich, M. M. 1982 Modification of vortex shedding in the synchronization range. Trans. ASME J. Fluids Engng 104 (4), 513517.
Zinn, B. T. & Lores, M. E. 1971 Application of the Galerkin method in the solution of non-linear axial combustion instability problems in liquid rockets. Combust. Sci. Technol. 4, 269278.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed