Skip to main content Accessibility help
×
Home

A theory of magnetic-like fields for viscoelastic fluids

  • Thibault Vieu (a1) (a2) (a3) and Innocent Mutabazi (a1)

Abstract

We formulate the Oldroyd-B model for viscoelastic fluids in terms of magnetic-like fields obeying a set of equations analogous to Maxwell’s equations. In the limit of infinite relaxation time for the polymer, the polymeric stress tensor can be identified with the Maxwell stress tensor of a magnetic field. Away from this asymptotic case, the stress tensor of the polymer cannot be decomposed in terms of a tensor product of a magnetic field any more and several theoretical issues arise. We show that the analogy between the Oldroyd-B model and Maxwell’s equations can still be rigorously extended provided that one defines three magnetic-like fields obeying Maxwell’s equations with magnetic currents and charges. This solves the theoretical caveats and leads to a better understanding of the viscoelastic instability. In particular, we evidence a gauge symmetry which unifies some previous works, and we investigate several gauge choices. As an illustration we apply our method to viscoelastic Taylor–Couette flow but this theory of ‘viscoelastic fields’ is general and may be useful in a large variety of viscoelastic flows. The present study may also be of interest from the electromagnetic point of view, as it provides real systems possessing magnetic-like charges (monopoles) and currents.

Copyright

Corresponding author

Email address for correspondence: innocent.mutabazi@univ-lehavre.fr

References

Hide All
Bai, Y.2015 Study of viscoelastic instability in Taylor–Couette system as an analog of the magnetorotational instability. Thèse de doctorat, Université du Havre.
Bai, Y., Crumeyrolle, O. & Mutabazi, I. 2015 Viscoelastic Taylor–Couette instability as analog of the magnetorotational instability. Phys. Rev. E 92, 031001.
Bakunin, O. G. 2008 Turbulence and Diffusion. (Springer Series in Synergetics). Springer.
Balbus, S. A. & Hawley, J. F. 1991 A powerful local shear instability in weakly magnetized disks. I – Linear analysis. II – Nonlinear evolution. Astrophys. J. 376, 214233.10.1086/170270
Balbus, S. A. & Hawley, J. F. 1998 Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod. Phys. 70, 153.10.1103/RevModPhys.70.1
Balci, N., Thomases, B., Renardy, M. & Doering, C. R. 2011 Symmetric factorization of the conformation tensor in viscoelastic fluid models. J. Non-Newtonian Fluid Mech. 166 (11), 546553.10.1016/j.jnnfm.2011.02.008
Beaumert, B. M. & Muller, S. J. 1999 Axisymmetric and non-axisymmetric elastic and inertio-elastic instabilities in Taylor–Couette flow. J. Non-Newtonian Fluid Mech. 83, 3369.10.1016/S0377-0257(98)00132-3
Bird, C. F., Armstrong, R. C. & Hassager, O. 1987a Dynamics of Polymeric Liquids. vol. 1. Wiley.
Bird, R. B., Curtiss, C. F., Armstrong, R. C. & Hassager, O. 1987b Dynamics of Polymeric Liquids. vol. 2. Wiley.
Boldyrev, S., Huynh, D. & Pariev, V. 2009 Analog of astrophysical magnetorotational instability in a Couette–Taylor flow of polymer fluids. Phys. Rev. E 80, 066310.
Chandrasekhar, S. 1960 The stability of non-dissipative Couette flow in hydromagnetics. Proc. Natl Acad. Sci. USA 46 (2), 253257.10.1073/pnas.46.2.253
Comon, P., Golub, G., Lim, L. & Mourrain, B. 2008 Symmetric tensors and symmetric tensor rank. SIAM J. Matrix Anal. Applics 30 (3), 12541279.10.1137/060661569
Crumeyrolle, O., Mutabazi, I. & Grisel, M. 2002 Experimental study of inertioelastic Couette–Taylor instability modes in dilute and semidilute polymer solutions. Phys. Fluids 14 (5), 16811688.10.1063/1.1466837
Davidson, P. A. 2001 An Introduction to Magnetohydrodynamics. Cambridge University Press.10.1017/CBO9780511626333
Doi, M. 1986 Introduction to Polymer Physics. Oxford University Press.
Fouxon, A. & Lebedev, V. 2003 Spectra of turbulence in dilute polymer solutions. Phys. Fluids 15 (7), 20602072.10.1063/1.1577563
Groisman, A. & Steinberg, V. 1996 Couette–Taylor flow in a dilute polymer solution. Phys. Rev. Lett. 77, 14801483.10.1103/PhysRevLett.77.1480
Groisman, A. & Steinberg, V. 1998 Mechanism of elastic instability in Couette flow of polymer solutions: experiment. Phys. Fluids 10 (10), 24512463.10.1063/1.869764
Hameduddin, I., Meneveau, C., Zaki, T. A. & Gayme, D. F. 2018 Geometric decomposition of the conformation tensor in viscoelastic turbulence. J. Fluid Mech. 842, 395427.10.1017/jfm.2018.118
Hollerbach, R. & Rüdiger, G. 2005 New type of magnetorotational instability in cylindrical Taylor–Couette flow. Phys. Rev. Lett. 95, 124501.10.1103/PhysRevLett.95.124501
Ji, H. & Balbus, S. 2013 Angular momentum transport in astrophysics and in the lab. Phys. Today 66, 2733.10.1063/PT.3.2081
Ji, H., Burin, M., Schartman, E. & Goodman, J. 2006 Hydrodynamic turbulence cannot transport angular momentum effectively in astrophysical disks. Nature 444, 343346.10.1038/nature05323
Joseph, D. D. 1990 Models like Maxwell’s and Boltzmann’s. In Fluid Dynamics of Viscoelastic Liquids, pp. 134. Springer.10.1007/978-1-4612-4462-2
Larson, R. G. 1992 Instabilities in viscoelastic flows. Rheol. Acta 31, 213263.10.1007/BF00366504
Larson, R. G., Shaqfeh, E. S. G. & Muller, S. J. 1990 A purely elastic instability in Taylor–Couette flow. J. Fluid Mech. 218, 573600.10.1017/S0022112090001124
Latrache, N., Crumeyrolle, O. & Mutabazi, I. 2016 Defect-mediated turbulence in ribbons of viscoelastic Taylor–Couette flow. Phys. Rev. E 93 (4), 043126.
Morozov, A. N. & van Saarloos, W. 2007 An introductory essay on subcritical instabilities and the transition to turbulence in visco-elastic parallel shear flows. Phys. Rep. 447 (3), 112143.10.1016/j.physrep.2007.03.004
Ogilvie, G. I. 2016 Lectures notes of astrophysical fluid dynamics. J. Plasma. Phys. 82, 205820301.10.1017/S0022377816000489
Ogilvie, G. I. & Potter, A. T. 2008 Magnetorotational-type instability in Couette–Taylor flow of a viscoelastic polymer liquid. Phys. Rev. Lett. 100, 074503.10.1103/PhysRevLett.100.074503
Ogilvie, G. I. & Proctor, M. R. E. 2003 On the relation between viscoelastic and magnetohydrodynamic flows and their instabilities. J. Fluid Mech. 476, 389409.10.1017/S0022112002003051
Schartman, E., Ji, H., Burin, M. & Goodman, J. 2012 Stability of quasi-Keplerian shear flow in a laboratory experiment. Astron. Astrophys. 543, A94.10.1051/0004-6361/201016252
Seilmayer, M., Galindo, V., Gerbeth, G., Gundrum, T., Stefani, F., Gellert, M., Rüdiger, G., Schultz, M. & Hollerbach, R. 2014 Experimental evidence for nonaxisymmetric magnetorotational instability in a rotating liquid metal exposed to an azimuthal magnetic field. Phys. Rev. Lett. 113, 024505.10.1103/PhysRevLett.113.024505
Shaqfeh, E. S. G. 1996 Purely elastic instabilities in viscometric flows. Annu. Rev. Fluid Mech. 28 (1), 129185.10.1146/annurev.fl.28.010196.001021
Stefani, F., Gerbeth, G., Gundrum, T., Hollerbach, R., Priede, J., Rüdiger, G. & Szklarski, J. 2009 Helical magnetorotational instability in a Taylor–Couette flow with strongly reduced Ekman pumping. Phys. Rev. E 80, 066303.
Vasil, G. M. 2015 On the magnetorotational instability and elastic buckling. Proc. R. Soc. A 471 (2177), 20140699.10.1098/rspa.2014.0699
Velikhov, E. P. 1959 Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field. Sov. Phys. JETP-USSR 9, 995998.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed