Skip to main content Accessibility help

System identification of a low-density jet via its noise-induced dynamics

  • Minwoo Lee (a1), Yuanhang Zhu (a1) (a2), Larry K. B. Li (a1) and Vikrant Gupta (a3)


Low-density jets are central to many natural and industrial processes. Under certain conditions, they can develop global oscillations at a limit cycle, behaving as a prototypical example of a self-excited hydrodynamic oscillator. In this study, we perform system identification of a low-density jet using measurements of its noise-induced dynamics in the unconditionally stable regime, prior to both the Hopf and saddle-node points. We show that this approach can enable prediction of (i) the order of nonlinearity, (ii) the locations and types of the bifurcation points (and hence the stability boundaries) and (iii) the resulting limit-cycle oscillations. The only assumption made about the system is that it obeys a Stuart–Landau equation in the vicinity of the Hopf point, thus making the method applicable to a variety of hydrodynamic systems. This study constitutes the first experimental demonstration of system identification using the noise-induced dynamics in only the unconditionally stable regime, i.e. away from the regimes where limit-cycle oscillations may occur. This opens up new possibilities for the prediction and analysis of the stability and nonlinear behaviour of hydrodynamic systems.


Corresponding author

Email addresses for correspondence:,


Hide All
Bonciolini, G., Ebi, D., Boujo, E. & Noiray, N. 2018 Experiments and modelling of rate-dependent transition delay in a stochastic subcritical bifurcation. R. Soc. Open Sci. 5 (3), 172078.
Boujo, E. & Noiray, N. 2017 Robust identification of harmonic oscillator parameters using the adjoint Fokker–Planck equation. Proc. R. Soc. Lond. A 473 (2200), 20160894.
Brunton, S. L., Proctor, J. L. & Kutz, J. N. 2016 Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 113 (15), 39323937.
Dijkstra, H. A., Wubs, F. W., Cliffe, A. K., Doedel, E., Dragomirescu, I. F., Eckhardt, B., Gelfgat, A. Y., Hazel, A. L., Lucarini, V., Salinger, A. G., Phipps, E. T., Sanchez-Umbria, J., Schuttelaars, H., Tuckerman, L. S. & Thiele, U. 2014 Numerical bifurcation methods and their application to fluid dynamics: analysis beyond simulation. Commun. Comput. Phys. 15, 145.
Dusek, J., Le Gal, P. & Fraune, P. 1994 A numerical and theoretical study of the first Hopf bifurcation in a cylinder wake. J. Fluid Mech. 264, 5980.
Fraser, A. M. & Swinney, H. L. 1986 Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33, 11341140.
Gupta, V., Saurabh, A., Paschereit, C. O. & Kabiraj, L. 2017 Numerical results on noise-induced dynamics in the subthreshold regime for thermoacoustic systems. J. Sound Vib. 390, 5566.
Hallberg, M. P. & Strykowski, P. J. 2006 On the universality of global modes in low-density axisymmetric jets. J. Fluid Mech. 569, 493507.
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22 (1), 473537.
Jackson, C. P. 1987 A finite-element study of the onset of vortex shedding in flow past variously shaped bodies. J. Fluid Mech. 182, 2345.
Kabiraj, L., Steinert, R., Saurabh, A. & Paschereit, C. O. 2015 Coherence resonance in a thermoacoustic system. Phys. Rev. E 92, 042909.
Kim, J. & Moin, P. 1985 Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59 (2), 308323.
Kyle, D. M. & Sreenivasan, K. R. 1993 The instability and breakdown of a round variable-density jet. J. Fluid Mech. 249, 619664.
Landau, L. D. 1944 On the problem of turbulence. Dokl. Akad. Nauk SSSR 44 (8), 339349.
Mevel, L., Benveniste, A., Basseville, M., Goursat, M., Peeters, B., Van der Auweraer, H. & Vecchio, A. 2006 Input/output versus output-only data processing for structural identification: application to in-flight data analysis. J. Sound Vib. 295 (3), 531552.
Monkewitz, P. A., Bechert, D. W., Barsikow, B. & Lehmann, B. 1990 Self-excited oscillations and mixing in a heated round jet. J. Fluid Mech. 213, 611639.
Nayfeh, A. H. 1981 Introduction to Perturbation Techniques. Wiley.
Nayfeh, A. H. & Mook, D. T. 1979 Nonlinear Oscillations. Wiley.
Noiray, N. & Schuermans, B. 2013 Deterministic quantities characterizing noise driven Hopf bifurcations in gas turbine combustors. Intl J. Non-Linear Mech. 50, 152163.
Pikovsky, A. S. & Kurths, J. 1997 Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett. 78, 775778.
Price, S. J. & Valerio, N. R. 1990 A non-linear investigation of single-degree-of-freedom instability in cylinder arrays subject to cross-flow. J. Sound Vib. 137 (3), 419432.
Provansal, M., Mathis, C. & Boyer, L. 1987 Bénard–von Kármán instability: transient and forced regimes. J. Fluid Mech. 182, 122.
Raghu, S. & Monkewitz, P. A. 1991 The bifurcation of a hot round jet to limit-cycle oscillations. Phys. Fluids A 3, 501503.
Roberts, J. 1986 Stochastic averaging: an approximate method of solving random vibration problems. Intl J. Non-Linear Mech. 21, 111134.
Schmidt, M. & Lipson, H. 2009 Distilling free-form natural laws from experimental data. Science 324 (5923), 8185.
Shimizu, M. & Kawahara, G. 2018 Construction of low-dimensional system reproducing low-Reynolds-number turbulence by machine learning. Phys. Rev. E (submitted). arXiv:1803.08206v1.
Sipp, D. & Lebedev, A. 2007 Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. J. Fluid Mech. 593, 333358.
Sreenivasan, K. R., Raghu, S. & Kyle, D. 1989 Absolute instability in variable density round jets. Exp. Fluids 7 (5), 309317.
Stratonovich, R. L. 1963 Topics in the Theory of Random Noise. Gordon and Breach.
Stratonovich, R. L. 1967 Topics in the Theory of Random Noise: General Theory of Random Processes; Nonlinear Transformations of Signals and Noise. Gordon and Breach.
Stuart, J. T. 1960 On the non-linear mechanics of wave disturbances in stable and unstable parallel flows. Part 1. The basic behaviour in plane Poiseuille flow. J. Fluid Mech. 9, 353370.
Takens, F. 1981 Detecting strange attractors in turbulence. Lect. Notes Math. 898, 366381.
Thompson, P. A. & Troian, S. M. 1997 A general boundary condition for liquid flow at solid surfaces. Nature 389 (6649), 360.
Thothadri, M. & Moon, F. C. 2005 Nonlinear system identification of systems with periodic limit-cycle response. Nonlinear Dyn. 39 (1–2), 6377.
Ushakov, O. V., Wünsche, H. J., Henneberger, F., Khovanov, I. A., Schimansky-Geier, L. & Zaks, M. A. 2005 Coherence resonance near a Hopf bifurcation. Phys. Rev. Lett. 95, 123903.
Wiesenfeld, K. 1985 Noisy precursors of nonlinear instabilities. J. Stat. Phys. 38 (5), 10711097.
Xu, Y., Gu, R., Zhang, H., Xu, W. & Duan, J. 2011 Stochastic bifurcations in a bistable Duffing–Van der Pol oscillator with colored noise. Phys. Rev. E 83 (5), 056215.
Yamapi, R., Filatrella, G., Aziz-Alaoui, M. A. & Cerdeira, H. A 2012 Effective Fokker–Planck equation for birhythmic modified van der Pol oscillator. Chaos 22 (4), 043114.
Zakharova, A., Vadivasova, T., Anishchenko, V., Koseska, A. & Kurths, J. 2010 Stochastic bifurcations and coherence like resonance in a self-sustained bistable noisy oscillator. Phys. Rev. E 81 (1), 011106.
Zhu, W. Q. & Yu, J. S. 1987 On the response of the van der Pol oscillator to white noise excitation. J. Sound Vib. 117 (3), 421431.
Zhu, Y.2017 Transition to global instability in low-density axisymmetric jets: bistability, intermittency and coherence resonance. Master’s thesis, The Hong Kong University of Science and Technology.
Zhu, Y., Gupta, V. & Li, L. K. B. 2017 Onset of global instability in low-density jets. J. Fluid Mech. 828, R1.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed