Skip to main content Accessibility help

Swept wing boundary-layer receptivity to localized surface roughness

  • David Tempelmann (a1), Lars-Uve Schrader (a1), Ardeshir Hanifi (a1) (a2), Luca Brandt (a1) and Dan S. Henningson (a1)...


The receptivity to localized surface roughness of a swept-wing boundary layer is studied by direct numerical simulation (DNS) and computations using the parabolized stability equations (PSEs). The DNS is laid out to reproduce wind tunnel experiments performed by Saric and coworkers, where micron-sized cylinders were used to trigger steady crossflow modes. The amplitudes of the roughness-induced fundamental crossflow wave and its superharmonics obtained from nonlinear PSE solutions agree excellently with the DNS results. A receptivity model using the direct and adjoint PSEs is shown to provide reliable predictions of the receptivity to roughness cylinders of different heights and chordwise locations. Being robust and computationally efficient, the model is well suited as a predictive tool of receptivity in flows of practical interest. The crossflow mode amplitudes obtained based on both DNS and PSE methods are 40 % of those measured in the experiments. Additional comparisons between experimental and PSE data for various disturbance wavelengths reveal that the measured disturbance amplitudes are consistently larger than those predicted by the PSE-based receptivity model by a nearly constant factor. Supplementary DNS and PSE computations suggest that possible natural leading-edge roughness and free-stream turbulence in the experiments are unlikely to account for this discrepancy. It is more likely that experimental uncertainties in the streamwise location of the roughness array and cylinder height are responsible for the additional receptivity observed in the experiments.



Hide All
1. Airiau, C. 2000 Non-parallel acoustic receptivity of a Blasius boundary layer using an adjoint approach. Flow Turbul. Combust. 65, 347367.
2. Airiau, C., Walther, S. & Bottaro, A. 2002 Boundary layer sensitivity and receptivity. C. R. Mécanique 330, 259265.
3. Andersson, P., Henningson, D. S. & Hanifi, A. 1998 On a stabilization procedure for the parabolic stability equations. J. Engng Math. 33 (3), 311332.
4. Bertolotti, F. P. 2000 Receptivity of three-dimensional boundary-layers to localized wall roughness and suction. Phys. Fluids 12 (7), 17991809.
5. Bertolotti, F. P., Herbert, T. & Spalart, P. R. 1992 Linear and nonlinear stability of the Blasius boundary layer. J. Fluid Mech. 242, 441474.
6. Bippes, H. 1999 Basic experiments on transition in three-dimensional boundary layers dominated by crossflow instability. Prog. Aerosp. Sci. 35, 363412.
7. Carpenter, A. L., Saric, W. S. & Reed, H. L. 2009 In-flight receptivity experiments on a 30-degree swept-wing using micron-sized discrete roughness size influence. AIAA Paper 2009-590.
8. Carpenter, M. H., Choudhari, M., Li, F., Streett, C. L. & Chang, C.-L. 2010 Excitation of crossflow instabilities in a swept wing boundary layer. AIAA Paper 2010-378.
9. Chang, C.-L. & Choudhari, M. 2005 Boundary-layer receptivity and integrated transition prediction. AIAA Paper 2005-0526.
10. Chang, C.-L., Malik, M. R., Erlebacher, G. & Hussaini, M. Y. 1991 Compressible stability of growing boundary layers using parabolized stability equations. AIAA Paper 1991-1636.
11. Choudhari, M. 1994 Roughness-induced generation of crossflow vortices in three-dimensional boundary layers. Theoret. Comput. Fluid Dyn. 6, 130.
12. Collis, S. S. & Lele, S. K. 1999 Receptivity to surface roughness near a swept leading edge. J. Fluid Mech. 380, 141168.
13. Crouch, J. D. 1993 Receptivity of three-dimensional boundary layers. AIAA Paper 93-0074.
14. Deyhle, H. & Bippes, H. 1996 Disturbance growth in an unstable three-dimensional boundary layer and its dependence on environmental conditions. J. Fluid Mech. 316, 73113.
15. Dobrinsky, A. 2002 Adjoint analysis for receptivity prediction. PhD thesis, Rice University.
16. Eliasson, P. 2002 EDGE: a Navier–Stokes solver for unstructured grids. In Proceedings to Finite Volumes for Complex Applications III (ed. Kroner, D. & Herbin, R. ), pp. 527534. Hemre Penton Science London.
17. Fedorov, A. V. 1988 Excitation of waves of instability of the secondary flow in the boundary layer on a swept wing. J. Appl. Mech. Tech. Phys. 29, 643648.
18. Fischer, P. F., Lottes, J. W. & Kerkemeier, S. G. 2008 Nek5000 Web page.
19. Haj-Hariri, H. 1994 Characteristics analysis of the parabolized stability equations. Stud. Appl. Math. 92, 4153.
20. Hanifi, A., Henningson, D. S., Hein, S., Bertolotti, F. P & Simen, M. 1994 Linear non-local instability analysis: the linear NOLOT code. FFA TN 1994-54.
21. Hanifi, A., Schmid, P. J. & Henningson, D. S. 1996 Transient growth in compressible boundary layer flow. Phys. Fluids 8 (3), 826837.
22. Haynes, T. S. & Reed, H. L. 2000 Simulation of swept-wing vortices using nonlinear parabolized stability equations. J. Fluid Mech. 405, 325349.
23. Hein, S., Hanifi, A. & Casalis, G. 2000 Nonlinear transition prediction. In Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering.
24. Hellsten, A. 2005 New advanced k- turbulence model for high-lift aerodynamics. AIAA J. 43 (9), 18571869.
25. Herbert, T. 1997 Parabolized stability equations. Annu. Rev. Fluid Mech. 29, 245283.
26. Hill, D. C. 1995 Adjoint systems and their role in the receptivity problem for boundary layers. J. Fluid Mech. 292, 183204.
27. Hill, D. C. 1997 Receptivity in non-parallel boundary layers. In Proceedings of the 1997 ASME Fluids Engineering Division Summer Meeting. ASME.
28. Maday, Y. & Patera, A. T. 1989 Spectral element methods for the Navier–Stokes equations. In State of the Art Surveys in Computational Mechanics (ed. Noor, A. K. ). pp. 71143. ASME.
29. Malik, M. R., Li, F., Choudhari, M. M. & Chang, C.-L. 1999 Secondary instability of crossflow vortices and swept-wing boundary-layer transition. J. Fluid Mech. 399, 85115.
30. Manuilovich, S. V. 1989 Disturbances of a three-dimensional boundary layer generated by surface roughness. Fluid Dyn. 24, 764769.
31. Ng, L. L. & Crouch, J. D. 1999 Roughness-induced receptivity to crossflow vortices on a swept wing. Phys. Fluids 11 (2), 432438.
32. Nishino, T. & Shariff, K. 2009 Direct numerical simulation of a swept-wing boundary layer with an array of discrete roughness elements. In Proceedings 7th IUTAM Symposium on Laminar-Turbulent Transition, Stockholm, Sweden. Springer.
33. Ohlsson, J., Schlatter, P., Fischer, P. F. & Henningson, D. S. 2011 Stabilization of the spectral-element method in turbulent flow simulations. In Spectral and High Order Methods for Partial Differential Equations (ed. Hesthaven, J. S. & Rønquist, E. M. ), pp. 449458. Springer.
34. Patera, A. T. 1984 A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54, 468488.
35. Piot, E., Content, C. & Casalis, G. 2008 Receptivity of crossflow instabilities to a periodic roughness array on a swept cylinder: investigation of the roughness size influence. AIAA Paper 2008-502.
36. Reibert, M. S. 1996 Nonlinear stability, saturation, and transition in crossflow-dominated boundary layers. PhD thesis, Arizona State University.
37. Reibert, M. S., Saric, W. S., Carillo, R. B. & Chapman, K. L. 1996 Experiments in nonlinear saturation of stationary crossflow vortices in a swept-wing boundary layer. AIAA Paper 96-0184.
38. Rizzetta, D. P., Visbal, M. R., Reed, H. L. & Saric, W. S. 2010 Direct numerical simulation of discrete roughness on a swept-wing leading edge. AIAA J. 48 (11).
39. Sakov, P. 2011 gridgen-c: an orthogonal grid generator based on the CRDT algorithm (by conformal mapping).
40. Saric, W. S. Jr, Carillo, R. B. & Reibert, M. S. 1998a Leading-edge roughness as a transition control mechanism. AIAA Paper 98-0781.
41. Saric, W. S. Jr, Carillo, R. B. & Reibert, M. S. 1998b Nonlinear stability and transition in 3-D boundary layers. Meccanica 33, 469487.
42. Saric, W. S., Reed, H. L. & White, E. B. 2003 Stability and transition of three-dimensional boundary layers. Annu. Rev. Fluid Mech. 35, 413440.
43. Schlichting, H. 1979 Boundary-Layer Theory, seventh edition. McGraw-Hill.
44. Schrader, L. U., Amin, S. & Brandt, L. 2010 Transition to turbulence in the boundary layer over a smooth and rough swept plate exposed to free-stream turbulence. J. Fluid Mech. 646.
45. Schrader, L. U., Brandt, L. & Henningson, D. S. 2009 Receptivity mechanisms in three-dimensional boundary layer flows. J. Fluid Mech. 618, 209241.
46. Schrader, L.-U., Tempelmann, D., Brandt, L., Hanifi, A. & Henningson, D. S. 2011 Excitation of cross-flow vortices by surface roughness on a swept wing. In Proceedings of CASI AERO 2011 Conference.
47. Simen, M. 1992 Local and non-local stability theory of spatially varying flows. In Instability, Transition and Turbulence, pp. 181195. Springer.
48. Somers, D. M. & Horstmann, K.-H. 1985 Design of a medium-speed, natural laminar-flow aerofoil for commuter aircraft applications. DLR-IB. 129-85/26.
49. Tempelmann, D., Hanifi, A. & Henningson, D. S. 2010 Spatial optimal growth in three-dimensional boundary layers. J. Fluid Mech. 646, 537.
50. Tempelmann, D., Hanifi, A. & Henningson, D. S. 2012 Spatial optimal growth in three-dimensional compressible boundary layers. J. Fluid Mech. 704, 251279.
51. Tufo, H. M. & Fischer, P. F. 2001 Fast parallel direct solvers for coarse grid problems. J. Parallel Distrib. Comput. 61 (2), 151177.
52. Wallin, S. & Johansson, A. 2000 An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows. J. Fluid Mech. 403, 89132.
53. Weideman, J. A. & Reddy, S. C. 2000 A MATLAB differentiation matrix suite. ACM Trans. Math. Soft. 26 (4).
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Swept wing boundary-layer receptivity to localized surface roughness

  • David Tempelmann (a1), Lars-Uve Schrader (a1), Ardeshir Hanifi (a1) (a2), Luca Brandt (a1) and Dan S. Henningson (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed