Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-23T20:19:49.402Z Has data issue: false hasContentIssue false

Subfilter-scale enrichment of planetary boundary layer large eddy simulation using discrete Fourier–Gabor modes

Published online by Cambridge University Press:  27 April 2017

Aditya S. Ghate*
Affiliation:
Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305, USA
Sanjiva K. Lele
Affiliation:
Department of Aeronautics and Astronautics and Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
*
Email address for correspondence: aditya90@stanford.edu

Abstract

A new multiscale simulation methodology is introduced to facilitate computationally efficient simulations of high Reynolds number turbulence seen in wall-bounded flows. The scale splitting methodology uses traditional large eddy simulation (LES) with a wall model to simulate the larger scales which are subsequently enriched using a space–time compatible kinematic simulation. Computational feasibility and robustness of the methodology are investigated using two idealized problems that emulate turbulence within the planetary boundary layer (PBL), and a finite Reynolds number channel flow problem which serves to validate the methodology against direct numerical simulation. The space–time correlations and spectra generated using enriched LES show excellent agreement with LES conducted at high resolution for all three problems; thereby demonstrating the potential of this approach for high resolution PBL simulations with a drastic reduction in the computational costs when compared to the conventional approach.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abkar, M., Bae, H. J. & Moin, P. 2016 Minimum-dissipation scalar transport model for large-eddy simulation of turbulent flows. Phys. Rev. Fluids 1 (4), 041701.Google Scholar
Basu, S. & Porté-Agel, F. 2005 Large-eddy simulation of stably stratified atmospheric boundary layer turbulence: a scale-dependent dynamic modeling approach. J. Atmos. Sci. 63, 20742091.Google Scholar
Beare, R. J., Macvean, M. K., Holtslag, A., Cuxart, J., Esau, I., Golaz, J.-C., Jimenez, M. A., Khairoutdinov, M., Kosovic, B., Lewellen, D. et al. 2006 An intercomparison of large-eddy simulations of the stable boundary layer. Boundary-Layer Meteorol. 118 (2), 247272.Google Scholar
Berg, J., Natarajan, A., Mann, J. & Patton, E. G. 2016 Gaussian versus non-gaussian turbulence: impact on wind turbine loads. Wind Energy 19 (11), 19751989.Google Scholar
Bou-Zeid, E., Meneveau, C. & Parlange, M. 2005 A scale-dependent lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys. Fluids 17 (2), 025105.CrossRefGoogle Scholar
Canuto, V. M. & Dubovikov, M. S. 1996 A dynamical model for turbulence. I. General formalism. Phys. Fluids 8 (2), 571586.Google Scholar
Chougule, A., Mann, J. & Kelly, M.2013 Influence of atmospheric stability on the spatial structure of turbulence. PhD thesis, DTU Wind.Google Scholar
Comte-Bellot, G. & Corrsin, S. 1971 Simple Eulerian time correlation of full-and narrow-band velocity signals in grid-generated, isotropic turbulence. J. Fluid Mech. 48 (02), 273337.Google Scholar
Domaradzki, J. A. & Loh, K.-C. 1999 The subgrid-scale estimation model in the physical space representation. Phys. Fluids 11 (8), 23302342.CrossRefGoogle Scholar
Dubrulle, B., Laval, J.-P., Nazarenko, S. & Kevlahan, N. K.-R. 2001 A dynamic subfilter-scale model for plane parallel flows. Phys. Fluids 13 (7), 20452064.Google Scholar
Dubrulle, B., Laval, J.-P., Sullivan, P. & Werne, J. 2002 A new dynamical subgrid model for the planetary surface layer. Part I: the model and a priori tests. J. Atmos. Sci. 59 (4), 861876.Google Scholar
Dutt, A. & Rokhlin, V. 1993 Fast fourier transforms for nonequispaced data. SIAM J. Sci. Comput. 14 (6), 13681393.Google Scholar
Flohr, P. & Vassilicos, J. C. 2000 A scalar subgrid model with flow structure for large-eddy simulations of scalar variances. J. Fluid Mech. 407, 315349.Google Scholar
Fung, J. C. H., Hunt, J. C. R., Malik, N. A. & Perkins, R. J. 1992 Kinematic simulation of homogeneous turbulence by unsteady random Fourier modes. J. Fluid Mech. 236, 281318.Google Scholar
Gottlieb, S. & Shu, C.-W. 1998 Total variation diminishing Runge–Kutta schemes. Maths Comput. 67 (221), 7385.Google Scholar
Graham, J., Kanov, K., Yang, X., Lee, M., Malaya, N., Lalescu, C., Burns, R., Eyink, G., Szalay, A., Moser, R. D. & Meneveau, C. 2016 A web services accessible database of turbulent channel flow and its use for testing a new integral wall model for LES. J. Turbul. 17 (2), 181215.Google Scholar
Greengard, L. & Lee, J.-Y. 2004 Accelerating the non-uniform fast Fourier transform. SIAM Rev. 46 (3), 443454.CrossRefGoogle Scholar
He, G., Jin, G. & Yang, Y. 2017 Space–time correlations and dynamic coupling in turbulent flows. Annu. Rev. Fluid Mech. 49 (1), 5170.Google Scholar
He, G.-W. & Zhang, J.-B. 2006 Elliptic model for space–time correlations in turbulent shear flows. Phys. Rev. E 73 (5), 055303.Google Scholar
Hughes, T., Feijóo, G., Mazzei, L. & Quincy, J.-B. 1998 The variational multiscale method – a paradigm for computational mechanics. Comput. Meth. Appl. Mech. Engng 166 (1), 324.Google Scholar
Jiménez, J. 2011 Cascades in wall-bounded turbulence. Annu. Rev. Fluid Mech. 44 (1), 2745.CrossRefGoogle Scholar
Kaimal, J. C. 1973 Turbulence spectra, length scales and structure parameters in the stable surface layer. Boundary-Layer Meteorol. 4 (1–4), 289309.Google Scholar
Khanna, S. & Brasseur, J. 1997 Analysis of Monin–Obukhov similarity from large-eddy simulation. J. Fluid Mech. 345, 251286.Google Scholar
Kraichnan, R. H 1964 Decay of isotropic turbulence in the direct-interaction approximation. Phys. Fluids 7 (7), 10301048.Google Scholar
Kristensen, L. & Kirkegaard, P. 1987 Puff kinematics. In Proceedings of Workshop on Mesoscale Modelling, Turbulence and Diffusion, Risø National Laboratory.Google Scholar
Laval, J.-P., Dubrulle, B. & Nazarenko, S. 2001 Nonlocality and intermittency in three-dimensional turbulence. Phys. Fluids 13 (7), 19952012.CrossRefGoogle Scholar
Laval, J.-P., Dubrulle, B. & Nazarenko, S. 2004 Fast numerical simulations of 2d turbulence using a dynamic model for subfilter motions. J. Comput. Phys. 196 (1), 184207.Google Scholar
Lee, M. J. & Hunt, J. C. R. 1991 The structure of sheared turbulence near a plane boundary. In Turbulent Shear Flows 7, pp. 101118. Springer.Google Scholar
Lee, M., Malaya, N. & Moser, R. D. 2013 Petascale direct numerical simulation of turbulent channel flow on up to 786k cores. In Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, p. 61. ACM.Google Scholar
Lele, S. K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103 (1), 1642.CrossRefGoogle Scholar
Li, Y., Perlman, E., Wan, M., Yang, Y., Meneveau, C., Burns, R., Chen, S., Szalay, A. & Eyink, G. 2008 A public turbulence database cluster and applications to study lagrangian evolution of velocity increments in turbulence. J. Turbul. 9 (32), 129.Google Scholar
Manhart, M. & Friedrich, R. 1999 Towards DNS of separated turbulent boundary layers. In Direct and Large-Eddy Simulation III, pp. 429440. Springer.Google Scholar
Mann, J. 1994 The spatial structure of neutral atmospheric surface-layer turbulence. J. Fluid Mech. 273, 141168.Google Scholar
Mukerji, S., Mcdonougha, J. M., Mengüç, M. P., Manickavasagam, S. & Chung, S. 1998 Chaotic map models of soot fluctuations in turbulent diffusion flames. Intl J. Heat Mass Transfer 41 (24), 40954112.Google Scholar
Nagarajan, S., Lele, S. K. & Ferziger, J. H. 2003 A robust high-order compact method for large eddy simulation. J. Comput. Phys. 191 (2), 392419.CrossRefGoogle Scholar
Nazarenko, S., Kevlahan, N. K.-R. & Dubrulle, B. 1999 WKB theory for rapid distortion of inhomogeneous turbulence. J. Fluid Mech. 390, 325348.Google Scholar
Nazarenko, S., Kevlahan, N. K.-R. & Dubrulle, B. 2000 Nonlinear RDT theory of near-wall turbulence. Physica D 139 (1), 158176.Google Scholar
Nicoud, F., Toda, H. B., Cabrit, O., Bose, S. & Lee, J. 2011 Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids 23 (8), 085106.Google Scholar
Oberlack, M. 2001 A unified approach for symmetries in plane parallel turbulent shear flows. J. Fluid Mech. 427, 299328.CrossRefGoogle Scholar
Panofsky, H. A., Larko, D., Lipschutz, R., Stone, G., Bradley, E. F., Bowen, A. J. & Højstrup, J. 1982 Spectra of velocity components over complex terrain. Q. J. R. Meteorol. Soc. 108 (455), 215230.Google Scholar
Perlman, E., Burns, R., Li, Y. & Meneveau, C. 2007 Data exploration of turbulence simulations using a database cluster. In Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, p. 23. ACM.Google Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Porté-Agel, F., Meneveau, C. & Parlange, M. B. 2000 A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer. J. Fluid Mech. 415, 261284.Google Scholar
Sagaut, P., Deck, S. & Terracol, M. 2013 Multiscale and Multiresolution Approaches in Turbulence: LES, DES and Hybrid RANS/LES Methods: Applications and Guidelines. World Scientific.Google Scholar
Scotti, A. & Meneveau, C. 1999 A fractal model for large eddy simulation of turbulent flow. Physica D 127 (3), 198232.Google Scholar
Segalini, A. & Arnqvist, J. 2015 A spectral model for stably stratified turbulence. J. Fluid Mech. 781, 330352.Google Scholar
Spyropoulos, E. T. & Blaisdell, G. A. 1996 Evaluation of the dynamic model for simulations of compressible decaying isotropic turbulence. AIAA J. 34 (5), 990998.Google Scholar
Stefano, G. & Vasilyev, O. 2013 Wavelet-based adaptive large-eddy simulation with explicit filtering. J. Comput. Phys. 238, 240254.Google Scholar
Stevens, R. J. A. M., Wilczek, M. & Meneveau, C. 2014 Large-eddy simulation study of the logarithmic law for second- and higher-order moments in turbulent wall-bounded flow. J. Fluid Mech. 757, 888907.Google Scholar
Stolz, S. & Adams, N. A. 1999 An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids 11 (7), 16991701.CrossRefGoogle Scholar
Sullivan, P., McWilliams, J. C. & Moeng, C.-H. 1996 A grid nesting method for large-eddy simulation of planetary boundary-layer flows. Boundary-Layer Meteorol. 80 (1–2), 167202.Google Scholar
Sullivan, P., Weil, J. C., Patton, E. G., Jonker, H. & Mironov, D. 2016 Turbulent winds and temperature fronts in large-eddy simulations of the stable atmospheric boundary layer. J. Atmos. Sci. 73 (4), 18151840.Google Scholar
Terracol, M., Sagaut, P. & Basdevant, C. 2003 A time self-adaptive multilevel algorithm for large-eddy simulation. J. Comput. Phys. 184 (2), 339365.Google Scholar
Tritschler, V. K., Olson, B. J., Lele, S. K., Hickel, Stefan, Hu, X. Y. & Adams, N. A. 2014 On the Richtmyer–Meshkov instability evolving from a deterministic multimode planar interface. J. Fluid Mech. 755, 429462.Google Scholar
Waleffe, F. 1992 The nature of triad interactions in homogeneous turbulence. Phys. Fluids A 4 (2), 350363.Google Scholar
Wilczek, M., Stevens, R. J. A. M. & Meneveau, C. 2015 Spatio-temporal spectra in the logarithmic layer of wall turbulence: large-eddy simulations and simple models. J. Fluid Mech. 769, R1.Google Scholar
Xiong, Z., Nagarajan, S. & Lele, S. K. 2004 Simple method for generating inflow turbulence. AIAA J. 42 (10), 21642166.Google Scholar