Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-11T21:34:08.888Z Has data issue: false hasContentIssue false

Strain self-amplification is larger than vortex stretching due to an invariant relation of filtered velocity gradients

Published online by Cambridge University Press:  12 January 2023

P.-F. Yang
Affiliation:
State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
Z.D. Zhou
Affiliation:
State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
H. Xu
Affiliation:
Center for Combustion Energy and School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China
G.W. He*
Affiliation:
State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
*
Email address for correspondence: hgw@lnm.imech.ac.cn

Abstract

A relation among invariants of filtered velocity gradients with two different filter sizes is derived. Based on this relation and physical reasoning, it is shown analytically that strain self-amplification contributes more to energy transfer than vortex stretching in homogeneous turbulence, as observed in recent numerical investigations of homogeneous isotropic turbulence. We note that the invariant relation studied and hence the inequality between strain self-amplification and vortex stretching apply to all homogeneous flows, not restricted to isotropic turbulence.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ballouz, J.G. & Ouellette, N.T. 2018 Tensor geometry in the turbulent cascade. J. Fluid Mech. 835, 10481064.CrossRefGoogle Scholar
Ballouz, J.G. & Ouellette, N.T. 2020 Geometric constraints on energy transfer in the turbulent cascade. Phys. Rev. Fluids 5, 034603.CrossRefGoogle Scholar
Betchov, R. 1956 An inequality concerning the production of vorticity in isotropic turbulence. J. Fluid Mech. 1, 497504.CrossRefGoogle Scholar
Borue, V. & Orszag, S.A. 1998 Local energy flux and subgrid-scale statistics in three-dimensional turbulence. J. Fluid Mech. 366, 131.CrossRefGoogle Scholar
van der Bos, F., Tao, B., Meneveau, C. & Katz, J. 2002 Effects of small-scale turbulent motions on the filtered velocity gradient tensor as deduced from holographic particle image velocimetry measurements. Phys. Fluids 14 (7), 24562474.CrossRefGoogle Scholar
Buzzicotti, M., Linkmann, M., Aluie, H., Biferale, L., Brasseur, J. & Meneveau, C. 2018 Effect of filter type on the statistics of energy transfer between resolved and subfilter scales from a-priori analysis of direct numerical simulations of isotropic turbulence. J. Turbul. 19 (2), 167197.CrossRefGoogle Scholar
Carbone, M. & Bragg, A.D. 2020 Is vortex stretching the main cause of the turbulent energy cascade? J. Fluid Mech. 883, R2.CrossRefGoogle Scholar
Danish, M. & Meneveau, C. 2018 Multiscale analysis of the invariants of the velocity gradient tensor in isotropic turbulence. Phys. Rev. Fluids 3, 044604.CrossRefGoogle Scholar
Davidson, P.A. 2015 Turbulence: An Introduction for Scientists and Engineers, 2nd edn. Oxford Press.CrossRefGoogle Scholar
Doan, N.A.K., Swaminathan, N., Davidson, P.A. & Tanahashi, M. 2018 Scale locality of the energy cascade using real space quantities. Phys. Rev. Fluids 3, 084601.CrossRefGoogle Scholar
Dong, S., Huang, Y., Yuan, X. & Lozano-Durán, A. 2020 The coherent structure of the kinetic energy transfer in shear turbulence. J. Fluid Mech. 892, A22.CrossRefGoogle Scholar
Eyink, G. 1995 Local energy flux and the refined similarity hypothesis. J. Stat. Phys. 78, 335351.CrossRefGoogle Scholar
Eyink, G. 2006 Multi-scale gradient expansion of the turbulent stress tensor. J. Fluid Mech. 549, 159190.CrossRefGoogle Scholar
Fiscaletti, D., Attili, A., Bisetti, F. & Elsinga, G.E. 2016 a Scale interactions in a mixing layer - the role of the large-scale gradients. J. Fluid Mech. 791, 154173.CrossRefGoogle Scholar
Fiscaletti, D., Elsinga, G.E., Attili, A., Bisetti, F. & Buxton, O.R.H. 2016 b Scale dependence of the alignment between strain rate and rotation in turbulent shear flow. Phy. Rev. Fluids 1, 064405.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
He, G.W., Jin, G.D. & Yang, Y. 2017 Space-time correlations and dynamic coupling in turbulent flows. Annu. Rev. Fluid Mech. 49, 5170.CrossRefGoogle Scholar
Higgins, C.W., Parlange, M.B. & Meneveau, C. 2003 Alignment trends of velocity gradients and subgrid-scale fluxes in the turbulent atmospheric boundary layer. Boundary-Layer Meteorol. 109, 5983.CrossRefGoogle Scholar
Johnson, P.L. 2020 Energy transfer from large to small scales in turbulence by multiscale nonlinear strain and vorticity interactions. Phys. Rev. Lett. 124, 104501.CrossRefGoogle ScholarPubMed
Johnson, P.L. 2021 On the role of vorticity stretching and strain self-amplification in the turbulence energy cascade. J. Fluid Mech. 922, A3.CrossRefGoogle Scholar
Kolmogorov, A.N. 1941 a Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 1618.Google Scholar
Kolmogorov, A.N. 1941 b The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 299303.Google Scholar
Leung, T., Swaminathan, N. & DaVidson, P.A. 2012 Geometry and interaction of structures in homogeneous isotropic turbulence. J. Fluid Mech. 710, 453481.CrossRefGoogle Scholar
Lozano-Durán, A., Holzner, M. & Jiménez, J. 2016 Multiscale analysis of the topological invariants in the logarithmic region of turbulent channels at a friction Reynolds number of 932. J. Fluid Mech. 803, 356394.CrossRefGoogle Scholar
Meneveau, C. 2011 Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Annu. Rev. Fluid Mech. 43, 219245.CrossRefGoogle Scholar
Meneveau, C. & Katz, J. 2000 Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech. 32, 132.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Pullin, D.I. & Saffman, P.G. 1998 Vortex dynamics in turbulence. Annu. Rev. Fluid Mech. 30, 3151.CrossRefGoogle Scholar
Richardson, L.F. 1922 Weather Prediction by Numerical Processes. Cambridge University Press.Google Scholar
Tao, B., Katz, J. & Meneveau, C. 2000 Geometry and scale relationships in high Reynolds number turbulence determined from three-dimensional holographic velocimetry. Phys. Fluids 12, 941944.CrossRefGoogle Scholar
Tao, B., Katz, J. & Meneveau, C. 2002 Statistical geometry of subgrid-scale stresses determined from holographic particle image velocimetry measurements. J. Fluid Mech. 457, 3578.CrossRefGoogle Scholar
Taylor, G.I. 1937 The statistical theory of isotropic turbulence. J. Aeronaut. Sci. 4, 311315.CrossRefGoogle Scholar
Taylor, G.I. 1938 Production and dissipation of vorticity in a turbulent fluid. Proc. R. Soc. Lond. A 164, 1523.Google Scholar
Tennekes, H. & Lumley, J.L. 1972 A First Course in Turbulence. MIT Press.CrossRefGoogle Scholar
Tritton, D.J. 1988 Physical Fluid Dynamics, 2nd edn. Oxford University Press.Google Scholar
Tsinober, A. 2009 An Informal Conceptual Introduction to Turbulence. Springer.CrossRefGoogle Scholar
Vela-Martín, A. & Jiménez, J. 2021 Entropy, irreversibility and cascades in the inertial range of isotropic turbulence. J. Fluid Mech. 915, A36.CrossRefGoogle Scholar
Yang, P.-F., Fang, J., Fang, L., Pumir, A. & Xu, H. 2022 Low-order moments of the velocity gradient in homogeneous compressible turbulence. J. Fluid Mech. 947, R1.CrossRefGoogle Scholar
Yang, P.-F., Pumir, A. & Xu, H. 2020 Dynamics and invariants of the perceived velocity gradient tensor in homogeneous and isotropic turbulence. J. Fluid Mech. 897, A9.CrossRefGoogle Scholar
Zhou, Z.D., He, G.W., Wang, S.Z. & Jin, G.D. 2019 Subgrid-scale model for large-eddy simulation of isotropic turbulent flows using an artificial neural network. Comput. Fluids 195, 104319.CrossRefGoogle Scholar
Zhou, Z.D., Wang, S.Z. & Jin, G.D. 2018 A structural subgrid-scale model for relative dispersion in large-eddy simulation of isotropic turbulent flows by coupling kinematic simulation with approximate deconvolution method. Phys. Fluids 30, 105110.Google Scholar