Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-11T03:31:41.895Z Has data issue: false hasContentIssue false

Steady flow in a rapidly rotating sphere with weak precession

Published online by Cambridge University Press:  24 May 2011

SHIGEO KIDA*
Affiliation:
Department of Mechanical Engineering, Doshisha University, Tatara-miyakodani 1-3, Kyotanabe 610-0394, Japan
*
Email address for correspondence: skida@mail.doshisha.ac.jp

Abstract

The flow field of an incompressible viscous fluid in a precessing sphere is investigated by the asymptotic analysis for large Reynolds numbers and small Poincaré numbers. The long-standing unsolved equation (Roberts & Stewartson Astrophys. J., vol. 137, 1963, p. 777) for the velocity in the critical region of the boundary layer is solved for the first time in the literature, which enables us to describe explicitly the structure of the conical shear layers spawned from the critical regions into the interior inviscid region. Most of the flux between the boundary layer and the interior is taking place through these conical shear layers. The velocity field in the whole sphere, expanded in a power series of the Poincaré number, is quantitatively determined up to the first order, leaving the solid-body-rotation component to the next-order analysis.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bondi, H. & Lyttleton, R. A. 1953 On the dynamical theory of the rotation of the Earth. II. The effect of precession on the motion of the liquid core. Proc. Camb. Phil. Soc. 49, 498515.CrossRefGoogle Scholar
Busse, F. H. 1968 Steady fluid flow in a precessing spheroidal shell. J. Fluid Mech. 33, 739751.CrossRefGoogle Scholar
Goto, S., Ishii, N., Kida, S. & Nishioka, M. 2007 Turbulence generator using a precessing sphere. Phys. Fluids 19, 061705.CrossRefGoogle Scholar
Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.Google Scholar
Hesthaven, J. S., Kaber, S. M. & Lurati, L. 2006 Padé-Legendre interpolants for Gibbs reconstruction. J. Sci. Comput. 28, 337359.CrossRefGoogle Scholar
Hollerbach, R. & Kerswell, R. R. 1995 Oscillatory internal shear layers in rotating and precessing flows. J. Fluid Mech. 298, 327339.CrossRefGoogle Scholar
Kerswell, R. R. 1995 On the internal shear layers spawned by the critical regions in oscillatory Ekman boundary Layers. J. Fluid Mech. 298, 311325.CrossRefGoogle Scholar
Kida, S. & Nakayama, K. 2008 Helical flow structure in a precessing sphere. J. Phys. Soc. Japan 77 054401.CrossRefGoogle Scholar
Kida, S., Nakayama, K. & Honda, N. 2009 Streamline tori in a precessing sphere at small Reynolds numbers. Fluid Dyn. Res. 41, 011401.CrossRefGoogle Scholar
Malkus, W. V. R. 1968 Precession of the earth as the cause of geomagnetism. Science 160, 259264.CrossRefGoogle ScholarPubMed
Noir, J., Brito, D., Aldridge, K. & Cardin, P. 2001 a Experimental evidence of inertial waves in a precessing spheroidal cavity. Geophy. Res. Lett. 28, 37853788.Google Scholar
Noir, J., Jault, D. & Cardin, P. 2001 b Numerical study of the motions within a slowly precessing sphere at low Eckman number. J. Fluid Mech. 437, 282299.CrossRefGoogle Scholar
Roberts, P. H. & Glatzmaier, G. A. 2000 Geodynamo theory and simulations. Rev. Mod. Phys. 72, 10811123.CrossRefGoogle Scholar
Roberts, P. H. & Stewartson, K. 1963 On the stability of a Maclaurin spheroid of small viscosity. Astrophys. J. 137, 777790.Google Scholar
Tilgner, A. & Busse, F. H. 2001 Fluid flows in precessing spherical shells. J. Fluid Mech. 426, 387396.Google Scholar
Vanyo, J., Wilde, P., Cardin, P. & Olson, P. 1995 Experiments on precessing flows in the Earth's liquid core. Geophys. J. Intl 121, 136142.CrossRefGoogle Scholar