Skip to main content Accessibility help

Stability of the laminar flow in a rectangular duct

  • Tomomasa Tatsumi (a1) and Takahiro Yoshimura (a2)


The stability of the laminar flow in a rectangular duct of an arbitrary aspect ratio is investigated numerically by expanding the flow fields of both the main flow and the disturbance into series of Legendre polynomials and solving the eigenvalue problem of the resulting matrix equation. The stability of the flow is found to depend upon the aspect ratio of the duct and the mode of the disturbance. The flow is unstable to two of the four possible modes of different parity and stable to the other two. With respect to the most unstable mode, the flow is stable or unstable according as the aspect ratio is below or above a critical value of 3.2 respectively, and the critical Reynolds number decreases monotonically with increasing aspect ratio towards the known value of 5772 for plane Poiseuille flow. The flow field of the disturbance shows the existence of strong vortex layers along the critical layer at which the velocity equals the phase velocity of the disturbance.



Hide All
Cornish, R. J.: 1928 Flow in a pipe of rectangular cross-section. Proc. R. Soc. Lond. A 120, 691700.
Davies, S. J. & White, C. M., 1928 An experimental study of the flow of water in pipes of rectangular section. Proc. R. Soc. Lond. A 119, 92107.
Drazin, P. G. & Reid, W. H., 1981 Hydrodynamic Stability, pp. 216221. Cambridge University Press.
Kao, T. W. & Park, C., 1970 Experimental investigations of the stability of channel flows. Part 1. Flow of a single liquid in a rectangular channel. J. Fluid Mech. 43, 145164.
Orszag, S.: 1971 Accurate solution of the Orr–Sommerfeld stability equation. J. Fluid Mech. 50, 689703.
Rosenhead, L. (ed.) 1963 Laminar Boundary Laters, pp. 492579. Clarendon.
De Saint-Venant, B. 1855 Mémoire sur la torsion des prismes. Mémorires de l'Academie des Sciences des Savants Etrangers. 14, 233560.
Schiller, L.: 1923 Uber den Strömungswiderstand von Rohren verschiedenen Querschnitts und Rauhigkeitsgrades. Z. Angew. Math. Mech. 3, 213.
Schlichting, H.: 1933 Zur Entstehung der Turbulenz bei der Plattenströmung. Nachr. Ges. Wiss. Göttingen, Math. – phys. Kl. 181–208; Z. Angew. Math. Mech. 13, 171174.
Schubauer, G. B. & Skramstad, H. K., 1947 Laminar boundary layer oscillations and transition on a flat plate. J. Res. Natl Bur. Stand. 38, 251292; J. Aero. Sci. 14, 69–78.
Tollmien, W.: 1929 Uber die entstehung der Turbulenz. Nachr. Ges. Wiss. Göttingen, 21–44.
MathJax is a JavaScript display engine for mathematics. For more information see

Stability of the laminar flow in a rectangular duct

  • Tomomasa Tatsumi (a1) and Takahiro Yoshimura (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.