Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-12T22:31:06.761Z Has data issue: false hasContentIssue false

Stability of a thin annular film in pressure-driven, low-Reynolds-number flow through a capillary

Published online by Cambridge University Press:  26 April 2006

R. W. Aul
Affiliation:
School of Chemical Engineering, Cornell University, Ithaca, NY 14850, USA
W. L. Olbricht
Affiliation:
School of Chemical Engineering, Cornell University, Ithaca, NY 14850, USA

Abstract

Experimental studies of low-Reynolds number, pressure-driven core–annular flow in a straight capillary tube are reported. The annular film is thin compared with the radius of the tube, and the viscosity of the film fluid is much larger than the viscosity of the core fluid. Photographs show that the film is unstable under all conditions investigated in the experiment. The film fluid collects in axisymmetric lobes that are spaced periodically along the capillary wall. The spacing of the lobes and their translational velocity correspond closely with the wavelength of the most unstable disturbance and phase velocity calculated from linear stability theory. Eventually, the continued growth of the lobes results in the formation of a fluid lens that breaks the inner core.

Type
Research Article
Copyright
© 1990 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arriola, A., Willhite, G. P., Green, D. W. 1983 Soc. Petrol. Engrs J. Feb. 1983, 99.
Aul, R. W. 1989 The motion of drops and long bubbles through small capillaries: coalescence of drops and annular film stability. Ph.D. thesis, Cornell University, Ithaca, NY.
Bretherton, F. P. 1961 J. Fluid Mech. 10, 166
Chen, J.-D. 1984 J. Colloid Interface Sci. 98, 329.
Chen, J.-D. 1986 J. Colloid Interface Sci. 110, 448.
Chen, J.-D. & Koplik, J. 1985 J. Colloid Interface Sci. 108, 304.
Frenkel, A. L., Babchin, A. J., Levich, B. G., Shlang, T. & Sivashinsky, G. I. 1987 J. Colloid Interface Sci. 115, 225.
Gauglitz, P. A. & Radke, C. J. 1988 Chem. Engng Sci. 43, 1457.
Goldsmith, H. L. & Mason, S. G. 1963 J. Colloid Interface Sci. 18, 237.
Goren, S. L. 1962 J. Fluid Mech. 12, 309.
Hammond, P. S. 1983 J. Fluid Mech. 137, 363.
Hickox, C. E. 1971 Phys. Fluids 14, 251.
Hu, H. & Joseph, D. D. 1989 J. Fluid Mech. 205, 359.
Joseph, D. D., Renardy, M., Renardy, Y. 1984 J. Fluid Mech. 141, 369.
Lenormand, R., Zarcone, C. & Sarr, A. 1983 J. Fluid Mech. 135, 337.
Li, Y. & Wardlaw, N. C. 1985a J. Colloid Interface Sci. 109, 461.
Li, Y. & Wardlaw, N. C. 1985b J. Colloid Interface Sci. 109, 473.
Park, C.-W. & Homsy, G. M. 1984 J. Fluid Mech. 139, 291.
Ransohoff, T. C., Gauglitz, P. A. & Radke, C. J. 1987 AIChE J 33, 753.
Schwartz, L. W., Princen, H. M. & Kiss, A. D. 1986 J. Fluid Mech. 172, 259.
Wardlaw, N. C. 1982 J. Can. Petrol. Tech. May-June, 21.