Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-27T14:49:27.601Z Has data issue: false hasContentIssue false

Stability analysis of electro-osmotic flow in a rotating microchannel

Published online by Cambridge University Press:  15 March 2024

G.C. Shit*
Affiliation:
Department of Mathematics, Jadavpur University, Kolkata 700032, India
A. Sengupta
Affiliation:
Department of Mathematics, Jadavpur University, Kolkata 700032, India
Pranab K. Mondal
Affiliation:
Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
*
Email address for correspondence: gcshit@jadavpuruniversity.in

Abstract

We investigate the linear stability analysis of rotating electro-osmotic flow in confined and unconfined configurations by appealing to the Debye–Hückel approximation. Pertaining to flow in confined and unconfined domains, the stability equations are solved using the Galerkin method to obtain the stability picture. Both qualitative and quantitative aspects of Ekman spirals are examined in stable and unstable scenarios within the unconfined domain. Within the confined domain, the variation of the real growth rate and the transition to instability are analysed using the modified Routh–Hurwitz criteria, employed for the first time in this context. The stability of the underlying flow, characterized by the number of roots with a positive real part, is determined by establishing a Routhian table. The inferences of this analysis show that the velocity plane produces intriguing closed Ekman spirals, which diminish in size with an increase in the rotation speed $\omega$. The Ekman spirals in the stable region exhibit a distinct discontinuity, indicating the dissipation of disturbances over time. In the confined domain, the flow appears consistently stable for a set of involved parameters pertinent to this analysis, such as electrokinetic parameter $K=1.5$ and rotational parameter $\omega$ approximately up to $6$. However, the flow instabilities become evident for $K=1.5$ and $\omega \geq 6$.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abhimanyu, P., Kaushik, P., Mondal, P.K. & Chakraborty, S. 2016 Transiences in rotational electro-hydrodynamics microflows of a viscoelastic fluid under electrical double layer phenomena. J. Non-Newtonian Fluid Mech. 231, 5667.CrossRefGoogle Scholar
Ajdari, A. 1995 Electro-osmosis on inhomogeneously charged surfaces. Phys. Rev. Lett. 75 (4), 755.CrossRefGoogle ScholarPubMed
Ajdari, A. 1996 Generation of transverse fluid currents and forces by an electric field: electro-osmosis on charge-modulated and undulated surfaces. Phys. Rev. E 53 (5), 4996.CrossRefGoogle ScholarPubMed
Ajdari, A. & Bocquet, L. 2006 Giant amplification of interfacially driven transport by hydrodynamic slip: diffusio-osmosis and beyond. Phys. Rev. Lett. 96 (18), 186102.CrossRefGoogle ScholarPubMed
Anagnost, J.J. & Desoer, C.A. 1991 An elementary proof of the Routh–Hurwitz stability criterion. Circ. Syst. Signal Process. 10 (1), 101114.CrossRefGoogle Scholar
Aurnou, J.M., Horn, S. & Julien, K. 2020 Connections between nonrotating, slowly rotating, and rapidly rotating turbulent convection transport scalings. Phys. Rev. Res. 2 (4), 043115.CrossRefGoogle Scholar
Bahga, S.S., Vinogradova, O.I. & Bazant, M.Z. 2010 Anisotropic electro-osmotic flow over super-hydrophobic surfaces. J. Fluid Mech. 644, 245255.CrossRefGoogle Scholar
Barimani, M., Jamei, M.K. & Abbasi, M. 2022 Calculation of electro-osmotic flow development length in a rotating three-dimensional microchannel. Fluid Dyn. Res. 54 (5), 055503.CrossRefGoogle Scholar
Belyaev, A.V. & Vinogradova, O.I. 2011 Electro-osmosis on anisotropic superhydrophobic surfaces. Phys. Rev. Lett. 107 (9), 098301.CrossRefGoogle ScholarPubMed
Brask, A., Goranovic, G. & Bruus, H. 2003 Electroosmotic pumping of nonconducting liquids by viscous drag from a secondary conducting liquid. In Proceedings of the Nanotechnology Conference and Trade Show, pp. 190–193.Google Scholar
Brask, A., Goranović, G., Jensen, M.J. & Bruus, H. 2005 A novel electro-osmotic pump design for nonconducting liquids: theoretical analysis of flow rate–pressure characteristics and stability. J. Micromech. Microengng 15 (4), 883.CrossRefGoogle Scholar
Chakraborty, S. 2006 Augmentation of peristaltic microflows through electro-osmotic mechanisms. J. Phys. D: Appl. Phys. 39 (24), 5356.CrossRefGoogle Scholar
Chandrasekhar, S. 2013 Hydrodynamic and Hydromagnetic Stability. Courier Corporation.Google Scholar
Chang, C.C. & Wang, C.Y. 2011 Rotating electro-osmotic flow over a plate or between two plates. Phys. Rev. E 84 (5), 056320.CrossRefGoogle ScholarPubMed
Chapman, D.L. 1913 LI. A contribution to the theory of electrocapillarity. Lond. Edinb. Dublin Phil. Mag. J. Sci. 25 (148), 475481.CrossRefGoogle Scholar
D'Azzo, J.J. & Houpis, C.H. 1960 Feedback Control System Analysis and Synthesis. McGraw-Hill.Google Scholar
Dehe, S., Rofman, B., Bercovici, M. & Hardt, S. 2020 Electro-osmotic flow enhancement over superhydrophobic surfaces. Phys. Rev. Fluids 5 (5), 053701.CrossRefGoogle Scholar
Demekhin, E.A., Ganchenko, G.S., Navarkar, A. & Amiroudine, S. 2016 The stability of two layer dielectric-electrolyte micro-flow subjected to an external electric field. Phys. Fluids 28 (9), 092003.CrossRefGoogle Scholar
Duffy, D.C., Gillis, H.L., Lin, J., Sheppard, N.F. & Kellogg, G.J. 1999 Microfabricated centrifugal microfluidic systems: characterization and multiple enzymatic assays. Anal. Chem. 71 (20), 46694678.CrossRefGoogle Scholar
Dutta, P. & Beskok, A. 2001 Analytical solution of time periodic electroosmotic flows: analogies to Stokes’ second problem. Anal. Chem. 73 (21), 50975102.CrossRefGoogle Scholar
Ganchenko, G.S., Demekhin, E.A., Mayur, M. & Amiroudine, S. 2015 Electrokinetic instability of liquid micro- and nanofilms with a mobile charge. Phys. Fluids 27, 062002.CrossRefGoogle Scholar
Gandharv, S. & Kaushik, P. 2022 Transient electro-osmotic flow in rotating soft microchannel. Phys. Fluids 34 (8), 082023.CrossRefGoogle Scholar
Ghosal, S. 2002 Lubrication theory for electro-osmotic flow in a microfluidic channel of slowly varying cross-section and wall charge. J. Fluid Mech. 459, 103128.CrossRefGoogle Scholar
Gouy, M. 1910 Sur la constitution de la charge électrique à la surface d'un électrolyte. J. Phys. Theor. Appl. 9 (1), 457468.CrossRefGoogle Scholar
Hsieh, S.S., Lin, H.C. & Lin, C.Y. 2006 Electroosmotic flow velocity measurements in a square microchannel. Colloid Polym. Sci. 284, 12751286.CrossRefGoogle Scholar
Kaushik, P., Mandal, S. & Chakraborty, S. 2017 a Transient electroosmosis of a Maxwell fluid in a rotating microchannel. Electrophoresis 38 (21), 27412748.CrossRefGoogle Scholar
Kaushik, P., Mondal, P.K. & Chakraborty, S. 2017 b Rotational electrohydrodynamics of a non-Newtonian fluid under electrical double-layer phenomenon: the role of lateral confinement. Microfluid Nanofluid 21, 116.CrossRefGoogle Scholar
Kaushik, P., Mondal, P.K., Kundu, P.K. & Wongwises, S. 2019 Rotating electroosmotic flow through a polyelectrolyte-grafted microchannel: an analytical solution. Phys. Fluids 31 (2).CrossRefGoogle Scholar
Kemery, P.J., Steehler, J.K. & Bohn, P.W. 1998 Electric field mediated transport in nanometer diameter channels. Langmuir 14 (10), 28842889.CrossRefGoogle Scholar
Long, D., Stone, H.A. & Ajdari, A. 1999 Electroosmotic flows created by surface defects in capillary electrophoresis. J. Colloid Interface Sci. 212 (2), 338349.CrossRefGoogle ScholarPubMed
Lung, F.K. 1966 A new application of Routh–Hurwitz criterion. Electronic Theses Dissertations 6432 (1), 1434.Google Scholar
Lyklema, J. 1995 Fundamentals of Microfluidics. Academic Press.Google Scholar
Maduar, S.R., Belyaev, A.V., Lobaskin, V. & Vinogradova, O.I. 2015 Electrohydrodynamics near hydrophobic surfaces. Phys. Rev. Lett. 114 (11), 118301.CrossRefGoogle ScholarPubMed
Masliyah, J.H. & Bhattacharjee, S. 2006 Electrokinetic and Colloid Transport Phenomena. John Wiley & Sons.CrossRefGoogle Scholar
Mayur, M., Amiroudine, S. & Lasseux, D. 2012 Free-surface instability in electro-osmotic flows of ultrathin liquid films. Phys. Rev. E 85 (4), 046301.CrossRefGoogle ScholarPubMed
Mayur, M., Amiroudine, S., Lasseux, D. & Chakraborty, S. 2014 Effect of interfacial Maxwell stress on time periodic electro-osmotic flow in a thin liquid film with a flat interface. Electrophoresis 35 (5), 670680.CrossRefGoogle Scholar
Mondal, P.K., Ghosh, U., Bandopadhyay, A., DasGupta, D. & Chakraborty, S. 2013 Electric-field-driven contact-line dynamics of two immiscible fluids over chemically patterned surfaces in narrow confinements. Phys. Rev. E 88 (2), 023022.CrossRefGoogle ScholarPubMed
Murthy, J.Y. 1987 A numerical simulation of flow, heat and mass transfer in a floating zone at high rotational Reynolds numbers. J. Cryst. Growth 83 (1), 2334.CrossRefGoogle Scholar
Nam, S., Cho, I., Heo, J., Lim, G., Bazant, M.Z., Moon, D.J., Sung, G.Y. & Kim, S.J. 2015 Experimental verification of overlimiting current by surface conduction and electro-osmotic flow in microchannels. Phys. Rev. Lett. 114 (11), 114501.CrossRefGoogle ScholarPubMed
Posner, J.D. & Santiago, J.G. 2006 Convective instability of electrokinetic flows in a cross-shaped microchannel. J. Fluid Mech. 555, 142.CrossRefGoogle Scholar
Probstein, R.F. 2005 Physicochemical Hydrodynamics: An Introduction. John Wiley & Sons.Google Scholar
Ray, B., Reddy, P., Bandyopadhyay, D., Joo, S., Sharma, A., Qian, S. & Biswas, G. 2012 Instabilities in free-surface electroosmotic flows. Theor. Comput. Fluid Dyn. 26, 311318.CrossRefGoogle Scholar
Reza, M. & Gupta, A.S. 2012 Magnetohydrodynamic thermal instability in a conducting fluid layer with throughflow. Intl J. Non-Linear Mech. 47 (6), 616625.CrossRefGoogle Scholar
Sengupta, S., Ghosh, S., Saha, S. & Chakraborty, S. 2019 Rotational instabilities in microchannel flows. Phys. Fluids 31 (5), 054101.CrossRefGoogle Scholar
Shivakumara, I.S., Lee, J., Vajravelu, K. & Akkanagamma, M. 2012 Electrothermal convection in a rotating dielectric fluid layer: effect of velocity and temperature boundary conditions. Intl J. Heat Mass Transfer 55 (11–12), 29842991.CrossRefGoogle Scholar
Siva, T., Kumbhakar, B., Jangili, S. & Mondal, P.K. 2020 Unsteady electro-osmotic flow of couple stress fluid in a rotating microchannel: an analytical solution. Phys. Fluids 32 (10), 102013.CrossRefGoogle Scholar
Song, L., Yu, L., Zhou, Y., Antao, A.R., Prabhakaran, R. & Xuan, X. 2017 Electrokinetic instability in microchannel ferrofluid/water co-flows. Sci. Rep. 7 (1), 46510.CrossRefGoogle ScholarPubMed
Suresh, V. & Homsy, G.M. 2004 Stability of time-modulated electroosmotic flow. Phys. Fluids 16 (7), 23492356.CrossRefGoogle Scholar
Xie, Y., Fu, L., Niehaus, T. & Joly, L. 2020 Liquid–solid slip on charged walls: the dramatic impact of charge distribution. Phys. Rev. Lett. 125 (1), 014501.CrossRefGoogle ScholarPubMed
Zhang, M., Lashgari, I., Zaki, T.A. & Brandt, L. 2013 Linear stability analysis of channel flow of viscoelastic Oldroyd-B and FENE-P fluids. J. Fluid Mech. 737, 249279.CrossRefGoogle Scholar
Zhao, H. 2010 Electro-osmotic flow over a charged superhydrophobic surface. Phys. Rev. E 81 (6), 066314.CrossRefGoogle Scholar
Zheng, J. & Jian, Y. 2018 Rotating electroosmotic flow of two-layer fluids through a microparallel channel. Intl J. Mech. Sci. 136, 293302.CrossRefGoogle Scholar