Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-27T12:05:25.015Z Has data issue: false hasContentIssue false

Spreading of a viscoelastic drop on a solid substrate

Published online by Cambridge University Press:  24 July 2024

Peyman Rostami*
Affiliation:
Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Straße 6, 01069 Dresden, Germany
Mathis Fricke
Affiliation:
Department of Mathematics, TU Darmstadt, Schlossgartenstraße 7, 64289 Darmstadt, Germany
Simon Schubotz
Affiliation:
Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Straße 6, 01069 Dresden, Germany TU Dresden, Dresden 01062, Germany
Himanshu Patel
Affiliation:
Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Straße 6, 01069 Dresden, Germany
Reza Azizmalayeri
Affiliation:
Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Straße 6, 01069 Dresden, Germany
Günter K. Auernhammer*
Affiliation:
Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Straße 6, 01069 Dresden, Germany
*
Email addresses for correspondence: rostami@ipfdd.de, auernhammer@ipfdd.de
Email addresses for correspondence: rostami@ipfdd.de, auernhammer@ipfdd.de

Abstract

We study the spreading of Newtonian viscous (aqueous glycerin solution) and viscoelastic (aqueous polymer solution) drops on solid substrates with different wettabilities. For drops of the same zero-shear viscosity, we find in the early stages of spreading that viscoelastic drops (i) spread faster and (ii) their contact radius shows a different power law vs time than Newtonian drops. We argue that the effect of viscoelasticity is only observable for experimental time scales of the order of or larger than the internal relaxation time of the viscoelastic polymer solution. We attribute this behaviour to the shear thinning of the viscoelastic polymer solution. When approaching the contact line, the shear rate increases and the steady-state viscosity of the viscoelastic drop is lower than that of the Newtonian drop. We support our experimental findings with a simple (first-order) perturbation model that qualitatively agrees with our findings.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anna, S.L. & McKinley, G.H. 2001 Elasto-capillary thinning and breakup of model elastic liquids. J. Rheol. (N.Y.) 45 (1), 115138.CrossRefGoogle Scholar
Betelu, S.I. & Fontelos, M.A. 2003 Capillarity driven spreading of power-law fluids. Appl. Maths Lett. 16 (8), 13151320.CrossRefGoogle Scholar
Biance, A.-L., Clanet, C. & Quéré, D. 2004 First steps in the spreading of a liquid droplet. Phys. Rev. E 69 (1), 016301.CrossRefGoogle ScholarPubMed
Bird, J.C., Mandre, S. & Stone, H.A. 2008 Short-time dynamics of partial wetting. Phys. Rev. Lett. 100 (23), 234501.CrossRefGoogle ScholarPubMed
Blake, T.D. & Haynes, J.M. 1969 Kinetics of liquid/ liquid displacement. J. Colloid Interface Sci. 30, 421423.CrossRefGoogle Scholar
Bodziony, F., Wörner, M. & Marschall, H. 2023 The stressful way of droplets along single-fiber strands: a computational analysis. Phys. Fluids 35, 012110.CrossRefGoogle Scholar
Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev. Mod. Phys. 81 (2), 739.CrossRefGoogle Scholar
Bouillant, A., Dekker, P.J., Hack, M.A. & Snoeijer, J.H. 2022 Rapid viscoelastic spreading. Phys. Rev. Fluids 7 (12), 123604.CrossRefGoogle Scholar
Carlson, A., Bellani, G. & Amberg, G. 2011 Measuring contact line dissipation in dynamic wetting. Available at https://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A422041&dswid=295.Google Scholar
Carlson, A., Bellani, G. & Amberg, G. 2012 Universality in dynamic wetting dominated by contact-line friction. Phys. Rev. E 85 (4), 045302.CrossRefGoogle ScholarPubMed
Carré, A. & Eustache, F. 2000 Spreading kinetics of shear-thinning fluids in wetting and dewetting modes. Langmuir 16 (6), 29362941.CrossRefGoogle Scholar
Carré, A., Gastel, J.-C. & Shanahan, M.E.R. 1996 Viscoelastic effects in the spreading of liquids. Nature 379 (6564), 432434.CrossRefGoogle Scholar
Carré, A. & Shanahan, M.E.R. 2001 Viscoelastic braking of a running drop. Langmuir 17 (10), 29822985.CrossRefGoogle Scholar
Chen, L., Auernhammer, G.K. & Bonaccurso, E. 2011 Short time wetting dynamics on soft surfaces. Soft Matt. 7 (19), 90849089.CrossRefGoogle Scholar
Chen, L., Bonaccurso, E. & Shanahan, M.E.R. 2013 a Inertial to viscoelastic transition in early drop spreading on soft surfaces. Langmuir 29 (6), 18931898.CrossRefGoogle ScholarPubMed
Chen, L., Li, C., van der Vegt, N.F.A., Auernhammer, G.K. & Bonaccurso, E. 2013 b Initial electrospreading of aqueous electrolyte drops. Phys. Rev. Lett. 110 (2), 026103.CrossRefGoogle ScholarPubMed
Cherry, B.W. & Holmes, C.M. 1969 Kinetics of wetting of surfaces by polymers. J. Colloid Interface Sci. 29 (1), 174176.CrossRefGoogle Scholar
Costanzo, S., Huang, Q., Ianniruberto, G., Marrucci, G., Hassager, O. & Vlassopoulos, D. 2016 Shear and extensional rheology of polystyrene melts and solutions with the same number of entanglements. Macromolecules 49 (10), 39253935.CrossRefGoogle Scholar
Cox, R.G. 1986 The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168, 169194.CrossRefGoogle Scholar
Cross, M.M. 1965 Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems. J. Colloid Sci. 20 (5), 417437.CrossRefGoogle Scholar
Dontula, P., Macosko, C.W. & Scriven, L.E. 1999 Does the viscosity of glycerin fall at high shear rates? Ind. Engng Chem. Res. 38 (4), 17291735.CrossRefGoogle Scholar
Du, J., Chamakos, N.T., Papathanasiou, A.G. & Min, Q. 2021 Initial spreading dynamics of a liquid droplet: the effects of wettability, liquid properties, and substrate topography. Phys. Fluids 33 (4), 042118.CrossRefGoogle Scholar
Eddi, A., Winkels, K.G. & Snoeijer, J.H. 2013 Short time dynamics of viscous drop spreading. Phys. Fluids 25 (1), 013102.CrossRefGoogle Scholar
Eggers, J., Lister, J.R. & Stone, H.A. 1999 Coalescence of liquid drops. J. Fluid Mech. 401, 293310.CrossRefGoogle Scholar
Fermigier, M. & Jenffer, P. 1991 An experimental investigation of the dynamic contact angle in liquid-liquid systems. J. Colloid Interface Sci. 146 (1), 226241.CrossRefGoogle Scholar
Fox, H.W. & Zisman, W.A. 1950 The spreading of liquids on low energy surfaces. I. Polytetrafluoroethylene. J. Colloid Sci. 5 (6), 514531.CrossRefGoogle Scholar
Fricke, M. & Bothe, D. 2020 Boundary conditions for dynamic wetting-a mathematical analysis. Eur. Phys. J. Spec. Topics 229 (10), 18491865.CrossRefGoogle Scholar
Fricke, M., Köhne, M. & Bothe, D. 2019 A kinematic evolution equation for the dynamic contact angle and some consequences. Phys. D: Nonlinear Phenom. 394, 2643.CrossRefGoogle Scholar
Gastone, F., Tosco, T. & Sethi, R. 2014 Green stabilization of microscale iron particles using guar gum: bulk rheology, sedimentation rate and enzymatic degradation. J. Colloid Interface Sci. 421, 3343.CrossRefGoogle ScholarPubMed
de Gennes, P.G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57 (3), 827.CrossRefGoogle Scholar
Glasser, A., Cloutet, E., Hadziioannou, G. & Kellay, H. 2019 Tuning the rheology of conducting polymer inks for various deposition processes. Chem. Mater. 31 (17), 69366944.CrossRefGoogle Scholar
Hardy, W.B. 1919 III. The spreading of fluids on glass. Lond. Edinb. Dublin Phil. Mag. J. Sci. 38 (223), 4955.CrossRefGoogle Scholar
Hartmann, M., Fricke, M., Weimar, L., Gründing, D., Marić, T., Bothe, D. & Hardt, S. 2021 Breakup dynamics of capillary bridges on hydrophobic stripes. Intl J. Multiphase Flow 140, 103582.CrossRefGoogle Scholar
Hoath, S.D. 2016 Fundamentals of Inkjet Printing: The Science of Inkjet and Droplets. John Wiley & Sons.CrossRefGoogle Scholar
Huh, C. & Mason, S.G. 1977 The steady movement of a liquid meniscus in a capillary tube. J. Fluid Mech. 81 (3), 401419.CrossRefGoogle Scholar
Huh, C. & Scriven, L.E. 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35 (1), 85101.CrossRefGoogle Scholar
Iwamatsu, M. 2017 Spreading law of non-Newtonian power-law liquids on a spherical substrate by an energy-balance approach. Phys. Rev. E 96 (1), 012803.CrossRefGoogle ScholarPubMed
Jalaal, M., Stoeber, B. & Balmforth, N.J. 2021 Spreading of viscoplastic droplets. J. Fluid Mech. 914, A21.CrossRefGoogle Scholar
Li, X., Bodziony, F., Yin, M., Marschall, H., Berger, R. & Butt, H.-J. 2023 Kinetic drop friction. Nat. Commun. 14, 4571.CrossRefGoogle ScholarPubMed
Liang, Z.-P., Wang, X.-D., Lee, D.-J., Peng, X.-F. & Su, A. 2009 Spreading dynamics of power-law fluid droplets. J. Phys.: Condens. Matter 21 (46), 464117.Google ScholarPubMed
McKinley, G.H. 2005 Dimensionless groups for understanding free surface flows of complex fluids. Available at https://web.mit.edu/nnf/publications/GHM78.pdf.Google Scholar
Moffatt, H.K. 1964 Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18 (01), 118.CrossRefGoogle Scholar
Muralidhar, P., Bonaccurso, E., Auernhammer, G.K. & Butt, H.-J. 2011 Fast dynamic wetting of polymer surfaces by miscible and immiscible liquids. Colloid Polym. Sci. 289 (14), 16091615.CrossRefGoogle Scholar
Pelosse, A., Guazzelli, É. & Roché, M. 2023 Probing dissipation in spreading drops with granular suspensions. J. Fluid Mech. 955, A7.CrossRefGoogle Scholar
Petrov, J.G., Ralston, J., Schneemilch, M. & Hayes, R.A. 2003 Dynamics of partial wetting and dewetting in well-defined systems. J. Phys. Chem. B 107 (7), 16341645.CrossRefGoogle Scholar
Rednikov, A.Y. & Colinet, P. 2012 Evaporation-driven contact angles in a pure-vapor atmosphere: the effect of vapor pressure non-uniformity. Math. Model. Nat. Phenom. 7 (4), 5363.CrossRefGoogle Scholar
Rostami, P., Hormozi, M.A., Soltwedel, O., Azizmalayeri, R., von Klitzing, R. & Auernhammer, G.K. 2023 Dynamic wetting properties of pdms pseudo-brushes: four-phase contact point dynamics case. J. Chem. Phys. 158, 194703.CrossRefGoogle ScholarPubMed
Ruckenstein, E. & Dunn, C.S. 1977 Slip velocity during wetting of solids. J. Colloid Interface Sci. 59 (1), 135138.CrossRefGoogle Scholar
Sankaran, A.K. & Rothstein, J.P. 2012 Effect of viscoelasticity on liquid transfer during gravure printing. J. Non-Newtonian Fluid Mech. 175–176, 6475.CrossRefGoogle Scholar
Shanahan, M.E.R. 2001 Condensation transport in dynamic wetting. Langmuir 17 (13), 39974002.CrossRefGoogle Scholar
Shikhmurzaev, Y.D. 1997 Moving contact lines in liquid/liquid/solid systems. J. Fluid Mech. 334, 211249.CrossRefGoogle Scholar
Shikhmurzaev, Y.D. 2020 Moving contact lines and dynamic contact angles: a ‘litmus test’ for mathematical models, accomplishments and new challenges. Eur. Phys. J. Spec. Topics 229 (10), 19451977.CrossRefGoogle Scholar
Shuttleworth, R. & Bailey, G.L.J. 1948 The spreading of a liquid over a rough solid. Discuss. Faraday Soc. 3, 1622.CrossRefGoogle Scholar
Snoeijer, J.H. & Andreotti, B. 2013 Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45 (1), 269292.CrossRefGoogle Scholar
Snoeijer, J.H., Rio, E., Le Grand, N. & Limat, L. 2005 Self-similar flow and contact line geometry at the rear of cornered drops. Phys. Fluids 17, 072101.CrossRefGoogle Scholar
Subbaraman, V., Mashelkar, R.A. & Ulbrecht, J. 1971 Extrapolation procedures for zero shear viscosity with a falling sphere viscometer. Rheol. Acta 10, 429433.CrossRefGoogle Scholar
Tanner, L.H. 1979 The spreading of silicone oil drops on horizontal surfaces. J. Phys. D: Appl. Phys. 12 (9), 1473.CrossRefGoogle Scholar
Vereroudakis, E., Van Zee, N., Meijer, E.W. & Vlassopoulos, D. 2023 Repeated shear startup response of a supramolecular polymer. J. Non-Newtonian Fluid Mech. 315, 105021.CrossRefGoogle Scholar
Voinov, O.V. 1976 Hydrodynamics of wetting. Fluid Dyn. 11 (5), 714721.CrossRefGoogle Scholar
Wayner, P.C. 1994 Mechanical and thermal effects in the forced spreading of a liquid film with a finite contact angle. Colloids Surf. A: Physicochem. Engng Aspects 89 (2), 8995.CrossRefGoogle Scholar
Worthington Arthur, M. & Reynolds, O. 1883 On impact with a liquid surface. Proc. R. Soc. Lond. 34 (220-223), 217230.Google Scholar
Yada, S., Bazesefidpar, K., Tammisola, O., Amberg, G. & Bagheri, S. 2023 Rapid wetting of shear-thinning fluids. Phys. Rev. Fluids 8 (4), 043302.CrossRefGoogle Scholar
Young, T. 1805 III. An essay on the cohesion of fluids. Phil. Trans. R. Soc. Lond. 1, 171172.Google Scholar
Zhao, B., Bonaccurso, E., Auernhammer, G.K. & Chen, L. 2021 Elasticity-to-capillarity transition in soft substrate deformation. Nano Lett. 21 (24), 1036110367.CrossRefGoogle ScholarPubMed
Supplementary material: File

Rostami et al. supplementary material

Rostami et al. supplementary material
Download Rostami et al. supplementary material(File)
File 21.4 MB