Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-07T02:23:51.939Z Has data issue: false hasContentIssue false

Spontaneous suppression of inverse energy cascade in instability-driven 2-D turbulence

Published online by Cambridge University Press:  01 December 2022

Adrian van Kan*
Affiliation:
Department of Physics, University of California at Berkeley, Berkeley, CA 94720, USA
Benjamin Favier
Affiliation:
IRPHE, Aix Marseille Univ., CNRS, Centrale Marseille, 13384 Marseille, France
Keith Julien
Affiliation:
Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA
Edgar Knobloch
Affiliation:
Department of Physics, University of California at Berkeley, Berkeley, CA 94720, USA
*
Email address for correspondence: avankan@berkeley.edu

Abstract

Instabilities of fluid flows often generate turbulence. Using extensive direct numerical simulations, we study two-dimensional turbulence driven by a wavenumber-localised instability superposed on stochastic forcing, in contrast to previous studies of state-independent forcing. As the contribution of the instability forcing, measured by a parameter $\gamma$, increases, the system undergoes two transitions. For $\gamma$ below a first threshold, a regular large-scale vortex condensate forms. Above this threshold, shielded vortices (SVs) emerge within the condensate. At a second, larger value of $\gamma$, the condensate breaks down, and a gas of weakly interacting vortices with broken symmetry spontaneously emerges, characterised by preponderance of vortices of one sign only and suppressed inverse energy cascade. The latter transition is shown to depend on the damping mechanism. The number density of SVs in the broken symmetry state slowly increases via a random nucleation process. Bistability is observed between the condensate and mixed SV-condensate states. Our findings provide new evidence for a strong dependence of two-dimensional turbulence phenomenology on the forcing.

Type
JFM Rapids
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexakis, A. & Biferale, L. 2018 Cascades and transitions in turbulent flows. Phys. Rep. 767, 1101.CrossRefGoogle Scholar
Bartello, P., Métais, O. & Lesieur, M. 1994 Coherent structures in rotating three-dimensional turbulence. J. Fluid Mech. 273, 129.CrossRefGoogle Scholar
Boffetta, G. & Ecke, R.E. 2012 Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44, 427451.CrossRefGoogle Scholar
Borue, V. & Orszag, S.A. 1995 Forced three-dimensional homogeneous turbulence with hyperviscosity. Europhys. Lett. 29, 687692.CrossRefGoogle Scholar
Bos, W.J.T., Laadhari, F. & Agoua, W. 2020 Linearly forced isotropic turbulence at low Reynolds numbers. Phys. Rev. E 102, 033105.CrossRefGoogle ScholarPubMed
Burgess, B.H., Dritschel, D.G. & Scott, R.K. 2017 Vortex scaling ranges in two-dimensional turbulence. Phys. Fluids 29, 111104.CrossRefGoogle Scholar
Carton, X.J., Flierl, G.R. & Polvani, L.M. 1989 The generation of tripoles from unstable axisymmetric isolated vortex structures. Europhys. Lett. 9, 339344.CrossRefGoogle Scholar
Chan, C.-K., Mitra, D. & Brandenburg, A. 2012 Dynamics of saturated energy condensation in two-dimensional turbulence. Phys. Rev. E 85, 036315.CrossRefGoogle ScholarPubMed
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Dover.Google Scholar
Deusebio, E., Boffetta, G., Lindborg, E. & Musacchio, S. 2014 Dimensional transition in rotating turbulence. Phys. Rev. E 90, 023005.CrossRefGoogle ScholarPubMed
Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R.E. & Kessler, J.O. 2004 Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93, 098103.CrossRefGoogle ScholarPubMed
Favier, B., Guervilly, C. & Knobloch, E. 2019 Subcritical turbulent condensate in rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 864, R1.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence: The Legacy of AN Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Grooms, I., Julien, K., Weiss, J.B. & Knobloch, E 2010 Model of convective Taylor columns in rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 104, 224501.CrossRefGoogle ScholarPubMed
Jiménez, J. 1994 Hyperviscous vortices. J. Fluid Mech. 279, 169176.CrossRefGoogle Scholar
Jiménez, J. 2020 Dipoles and streams in two-dimensional turbulence. J. Fluid Mech. 904, A39.CrossRefGoogle Scholar
Jiménez, J. 2021 Collective organization and screening in two-dimensional turbulence. Phys. Rev. Fluids 6, 084601.CrossRefGoogle Scholar
Jiménez, J. & Guegan, A. 2007 Spontaneous generation of vortex crystals from forced two-dimensional homogeneous turbulence. Phys. Fluids 19, 085103.CrossRefGoogle Scholar
van Kan, A. & Alexakis, A. 2019 Condensates in thin-layer turbulence. J. Fluid Mech. 864, 490518.CrossRefGoogle Scholar
van Kan, A., Nemoto, T. & Alexakis, A. 2019 Rare transitions to thin-layer turbulent condensates. J. Fluid Mech. 878, 356369.CrossRefGoogle Scholar
Kizner, Z. 2011 Stability of point-vortex multipoles revisited. Phys. Fluids 23, 064104.CrossRefGoogle Scholar
Kizner, Z. & Khvoles, R. 2004 The tripole vortex: experimental evidence and explicit solutions. Phys. Rev. E 70, 016307.CrossRefGoogle ScholarPubMed
Kloosterziel, R.C. & Van Heijst, G.J.F. 1991 An experimental study of unstable barotropic vortices in a rotating fluid. J. Fluid Mech. 223, 124.CrossRefGoogle Scholar
Kraichnan, R. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 14171423.CrossRefGoogle Scholar
Lilly, D.K. 1969 Numerical simulation of two-dimensional turbulence. Phys. Fluids 12, II–240II–249.CrossRefGoogle Scholar
Linkmann, M., Boffetta, G., Marchetti, M.C. & Eckhardt, B. 2019 Phase transition to large scale coherent structures in two-dimensional active matter turbulence. Phys. Rev. Lett. 122, 214503.CrossRefGoogle ScholarPubMed
Linkmann, M., Hohmann, M. & Eckhardt, B. 2020 Non-universal transitions to two-dimensional turbulence. J. Fluid Mech. 892, A18.CrossRefGoogle Scholar
López, H.M., Gachelin, J., Douarche, C., Auradou, H. & Clément, E. 2015 Turning bacteria suspensions into superfluids. Phys. Rev. Lett. 115, 028301.CrossRefGoogle ScholarPubMed
Lundgren, T.S. 2003 Linearly forced isotropic turbulence. Annual Research Briefs, Center for Turbulence Research. pp. 461–473.Google Scholar
McWilliams, J.C. 1984 The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech. 146, 2143.CrossRefGoogle Scholar
Mininni, P.D., Rosenberg, D., Reddy, R. & Pouquet, A. 2011 A hybrid MPI–OpenMp scheme for scalable parallel pseudospectral computations for fluid turbulence. Parallel Comput. 37, 316326.CrossRefGoogle Scholar
Orlandi, P. & van Heijst, G.J.F. 1992 Numerical simulation of tripolar vortices in 2D flow. Fluid Dyn. Res. 9, 179206.CrossRefGoogle Scholar
Pasquero, C. & Falkovich, G. 2002 Stationary spectrum of vorticity cascade in two-dimensional turbulence. Phys. Rev. E 65, 056305.CrossRefGoogle ScholarPubMed
Ravelet, F., Marié, L., Chiffaudel, A. & Daviaud, F. 2004 Multistability and memory effect in a highly turbulent flow: experimental evidence for a global bifurcation. Phys. Rev. Lett. 93, 164501.CrossRefGoogle Scholar
Rubio, A.M., Julien, K., Knobloch, E. & Weiss, J.B. 2014 Upscale energy transfer in three-dimensional rapidly rotating turbulent convection. Phys. Rev. Lett. 112, 144501.CrossRefGoogle ScholarPubMed
Salmon, R. 1980 Baroclinic instability and geostrophic turbulence. Geophys. Astrophys. Fluid Dyn. 15, 167211.CrossRefGoogle Scholar
Słomka, J. & Dunkel, J. 2017 Geometry-dependent viscosity reduction in sheared active fluids. Phys. Rev. Fluids 2, 043102.CrossRefGoogle Scholar
Smith, L.M., Chasnov, J.R. & Waleffe, F. 1996 Crossover from two- to three-dimensional turbulence. Phys. Rev. Lett. 77, 24672470.CrossRefGoogle ScholarPubMed
Smith, L.M. & Yakhot, V. 1993 Bose condensation and small-scale structure generation in a random force driven 2D turbulence. Phys. Rev. Lett. 71, 352355.CrossRefGoogle Scholar
Sommeria, J. 1986 Experimental study of the two-dimensional inverse energy cascade in a square box. J. Fluid Mech. 170, 139168.CrossRefGoogle Scholar
Sozza, A., Boffetta, G., Muratore-Ginanneschi, P. & Musacchio, S. 2015 Dimensional transition of energy cascades in stably stratified forced thin fluid layers. Phys. Fluids 27, 035112.CrossRefGoogle Scholar
Toner, J. & Tu, Y. 1995 Long-range order in a two-dimensional dynamical XY model: how birds fly together. Phys. Rev. Lett. 75, 43264329.CrossRefGoogle Scholar
Tsang, Y.-K. & Young, W.R. 2009 Forced-dissipative two-dimensional turbulence: a scaling regime controlled by drag. Phys. Rev. E 79, 045308.CrossRefGoogle ScholarPubMed
Vallis, G.K. 2017 Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Van Heijst, G.J.F., Kloosterziel, R.C. & Williams, C.W.M. 1991 Laboratory experiments on the tripolar vortex in a rotating fluid. J. Fluid Mech. 225, 301331.CrossRefGoogle Scholar
Vladimirova, N., Derevyanko, S. & Falkovich, G. 2012 Phase transitions in wave turbulence. Phys. Rev. E 85 (1), 010101.CrossRefGoogle ScholarPubMed
Vorobieff, P., Rivera, M. & Ecke, R.E. 1999 Soap film flows: statistics of two-dimensional turbulence. Phys. Fluids 11, 21672177.CrossRefGoogle Scholar
Wensink, H.H., Dunkel, J., Heidenreich, S., Drescher, K., Goldstein, R.E., Löwen, H. & Yeomans, J.M. 2012 Meso-scale turbulence in living fluids. Proc. Natl Acad. Sci. USA 109, 1430814313.CrossRefGoogle ScholarPubMed