Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T19:17:29.070Z Has data issue: false hasContentIssue false

Spontaneous imbalance in the non-hydrostatic Boussinesq equations

Published online by Cambridge University Press:  23 May 2018

Hossein A. Kafiabad
Affiliation:
Department of Atmospheric and Oceanic Sciences, McGill University, 805 rue Sherbrooke ouest, Montreal, Quebec, H3A 0B9Canada
Peter Bartello
Affiliation:
Department of Atmospheric and Oceanic Sciences, McGill University, 805 rue Sherbrooke ouest, Montreal, Quebec, H3A 0B9Canada Department of Mathematics and Statistics, McGill University, 805 rue Sherbrooke ouest, Montreal, Quebec, H3A 0B9Canada

Abstract

Whereas high-frequency waves are valid solutions to the Boussinesq equations in certain limits, their amplitudes are generally observed to be small in large-scale atmospheric and oceanic data. Traditionally, this has led to the development of balance models, reducing the dynamics to only the slow subset. Their solutions, however, can spontaneously generate imbalance in the context of the full equations. To quantify this, we calculate how much energy is transferred from the balanced to the unbalanced part of a turbulent rotating stratified flow that has been initialised to remove high frequencies. We lay out an approach to derive the time evolution of the balanced modes in which their interactions with unbalanced modes are taken into account. This enables us to calculate the budget of balanced (and unbalanced) energy. Our results show that imbalance generation occurs at scales where the Froude and Rossby numbers are still small and the energy spectrum is steep. We find that the scale at which maximum imbalance is generated depends on the peak of the energy spectrum and is invariant to the strength of rotation over the range examined. The unbalanced energy, after being transferred from the balanced component of the flow at larger scales, is cascaded forward and forms a shallow energy spectrum. The steep balanced subrange of the energy spectrum and the shallow subrange cross and form a kink in the total energy spectrum consistent with observed atmospheric and oceanic data. A frequency analysis at different wavenumbers shows that the separation of time scales breaks down at wavenumbers larger than those of maximum imbalance generation, but smaller than the kink of the energy spectrum. Below these scales, there is a single turbulent distribution of frequencies.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asselin, O., Bartello, P. & Straub, D. N. 2018 On Boussinesq dynamics near the tropopause. J. Atmos. Sci. 75, 571585.CrossRefGoogle Scholar
Baer, F. & Tribbia, J. J. 1977 On complete filtering of gravity modes through nonlinear initialization. Mon. Weath. Rev. 105 (12), 15361539.2.0.CO;2>CrossRefGoogle Scholar
Bartello, P. 1995 Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J. Atmos. Sci. 52 (24), 44104428.2.0.CO;2>CrossRefGoogle Scholar
Bartello, P. 2010 Quasigeostrophic and stratified turbulence in the atmosphere. In IUTAM Symposium on Turbulence in the Atmosphere and Oceans, pp. 117130. Springer.CrossRefGoogle Scholar
Bartello, P. & Tobias, S. M. 2013 Sensitivity of stratified turbulence to the buoyancy Reynolds number. J. Fluid Mech. 725, 122.CrossRefGoogle Scholar
Billant, P. & Chomaz, J. M. 2001 Self-similarity of strongly stratified inviscid flows. Phys. Fluids 13 (6), 16451651.CrossRefGoogle Scholar
Brethouwer, G., Billant, P., Lindborg, E. & Chomaz, J. M. 2007 Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech. 585, 343368.CrossRefGoogle Scholar
Bühler, O., Callies, J. & Ferrari, R. 2014 Wave–vortex decomposition of one-dimensional ship-track data. J. Fluid Mech. 756, 10071026.CrossRefGoogle Scholar
Callies, J., Bühler, O. & Ferrari, R. 2016 The dynamics of mesoscale winds in the upper troposphere and lower stratosphere. J. Atmos. Sci. 73 (12), 48534872.CrossRefGoogle Scholar
Callies, J., Ferrari, R. & Bühler, O. 2014 Transition from geostrophic turbulence to inertia–gravity waves in the atmospheric energy spectrum. Proc. Natl Acad. Sci. 111 (48), 1703317038.CrossRefGoogle ScholarPubMed
Charney, J. G. 1948 On the scale of atmospheric motions. Geofys. Publ. Oslo 17, 117.Google Scholar
Charney, J. G. 1949 On a physical basis for the numerical prediction of large-scale motions in the atmosphere. J. Meteorol. 6, 371385.2.0.CO;2>CrossRefGoogle Scholar
Charney, J. G. 1971 Geostrophic turbulence. J. Atmos. Sci. 28 (6), 10871095.2.0.CO;2>CrossRefGoogle Scholar
Deusebio, E., Vallgren, A. & Lindborg, E. 2013 The route to dissipation in strongly stratified and rotating flows. J. Fluid Mech. 720, 66103.CrossRefGoogle Scholar
Dritschel, D. G. & McKiver, W. J. 2015 Effect of Prandtl’s ratio on balance in geophysical turbulence. J. Fluid Mech. 777, 569590.CrossRefGoogle Scholar
Evans, K. J., Lauritzen, P. H., Mishra, S. K., Neale, R. B., Taylor, M. A. & Tribbia, J. J. 2013 AMIP simulation with the CAM4 spectral element dynamical core. J. Clim. 26 (3), 689709.CrossRefGoogle Scholar
Ford, R., McIntyre, M. E. & Norton, W. A. 2000 Balance and the slow quasimanifold: some explicit results. J. Atmos. Sci. 57 (9), 12361254.2.0.CO;2>CrossRefGoogle Scholar
Gage, K. S. 1979 Evidence for a k -5/3 law inertial range in mesoscale two-dimensional turbulence. J. Atmos. Sci. 36 (10), 19501954.2.0.CO;2>CrossRefGoogle Scholar
Hamilton, K., Takahashi, Y. O. & Ohfuchi, W. 2008 Mesoscale spectrum of atmospheric motions investigated in a very fine resolution global general circulation model. J. Geophys. Res. 113, D18110.CrossRefGoogle Scholar
Kafiabad, H. A. & Bartello, P. 2016 Balance dynamics in rotating stratified turbulence. J. Fluid Mech. 795, 914949.CrossRefGoogle Scholar
Kafiabad, H. A. & Bartello, P. 2017 Rotating stratified turbulence and the slow manifold. Comput. Fluids 151, 2334.CrossRefGoogle Scholar
Kraichnan, R. H. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10 (7), 14171423.CrossRefGoogle Scholar
Kreiss, H. O. 1979 Problems with different time scales for ordinary differential equations. SIAM J. Numer. Anal. 16 (6), 980998.CrossRefGoogle Scholar
Kreiss, H. O. 1980 Problems with different time scales for partial differential equations. Commun. Pure Appl. Maths 33 (3), 399439.CrossRefGoogle Scholar
Leith, C. E. 1980 Nonlinear normal mode initialization and quasi-geostrophic theory. J. Atmos. Sci. 37 (5), 958968.2.0.CO;2>CrossRefGoogle Scholar
Lelong, M. P. & Riley, J. J. 1991 Internal wave–vortical mode interactions in strongly stratified flows. J. Fluid Mech. 232, 119.CrossRefGoogle Scholar
Lilly, D. K. 1983 Stratified turbulence and the mesoscale variability of the atmosphere. J. Atmos. Sci. 40 (3), 749761.2.0.CO;2>CrossRefGoogle Scholar
Lindborg, E. 1999 Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J. Fluid Mech. 388, 259288.CrossRefGoogle Scholar
Lindborg, E. 2005 The effect of rotation on the mesoscale energy cascade in the free atmosphere. Geophys. Res. Lett. 32, L01809.CrossRefGoogle Scholar
Lindborg, E. 2006 The energy cascade in a strongly stratified fluid. J. Fluid Mech. 550, 207242.CrossRefGoogle Scholar
Lindborg, E. 2015 A Helmholtz decomposition of structure functions and spectra calculated from aircraft data. J. Fluid Mech. 762, R4.CrossRefGoogle Scholar
Lorenz, E. N. 1986 On the existence of a slow manifold. J. Atmos. Sci. 43 (15), 15471558.2.0.CO;2>CrossRefGoogle Scholar
Lorenz, E. N. & Krishnamurthy, V. 1987 On the nonexistence of a slow manifold. J. Atmos. Sci. 44 (20), 29402950.2.0.CO;2>CrossRefGoogle Scholar
Machenhauer, B. 1977 On the dynamics of gravity oscillations in a shallow water model with applications to normal mode initialization. Beitr. Phys. Atmos. 50, 253271.Google Scholar
Marino, R., Mininni, P. D., Rosenberg, D. & Pouquet, A. 2013 Inverse cascades in rotating stratified turbulence: fast growth of large scales. Europhys. Lett. 102 (4), 44006.CrossRefGoogle Scholar
Marino, R., Rosenberg, D., Herbert, C. & Pouquet, A. 2015 Interplay of waves and eddies in rotating stratified turbulence and the link with kinetic–potential energy partition. Europhys. Lett. 112 (4), 49001.CrossRefGoogle Scholar
McIntyre, M. E. & Norton, W. A. 2000 Potential vorticity inversion on a hemisphere. J. Atmos. Sci. 57 (9), 12141235.2.0.CO;2>CrossRefGoogle Scholar
McKiver, W. J. & Dritschel, D. G. 2008 Balance in non-hydrostatic rotating stratified turbulence. J. Fluid Mech. 596, 201219.CrossRefGoogle Scholar
Mohebalhojeh, A. R. & Dritschel, D. G. 2001 Hierarchies of balance conditions for the f-plane shallow-water equations. J. Atmos. Sci. 58 (16), 24112426.2.0.CO;2>CrossRefGoogle Scholar
Molemaker, M. J., McWilliams, J. C. & Capet, X. 2010 Balanced and unbalanced routes to dissipation in an equilibrated eady flow. J. Fluid Mech. 654, 3563.CrossRefGoogle Scholar
Nadiga, B. T. 2014 Nonlinear evolution of a baroclinic wave and imbalanced dissipation. J. Fluid Mech. 756, 9651006.CrossRefGoogle Scholar
Nastrom, G. D. & Gage, K. S. 1985 A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci. 42 (9), 950960.2.0.CO;2>CrossRefGoogle Scholar
Ngan, K., Bartello, P. & Straub, D. N. 2008 Dissipation of synoptic-scale flow by small-scale turbulence. J. Atmos. Sci. 65 (3), 766791.CrossRefGoogle Scholar
Pouquet, A. & Marino, R. 2013 Geophysical turbulence and the duality of the energy flow across scales. Phys. Rev. Lett. 111 (23), 234501.CrossRefGoogle Scholar
Sun, Y. Q., Rotunno, R. & Zhang, F. 2017 Contributions of moist convection and internal gravity waves to building the atmospheric - 5/3 kinetic energy spectra. J. Atmos. Sci. 74 (1), 185201.CrossRefGoogle Scholar
Tulloch, R. & Smith, K. S. 2006 A theory for the atmospheric energy spectrum: depth-limited temperature anomalies at the tropopause. Proc. Natl Acad. Sci. 103 (40), 1469014694.CrossRefGoogle ScholarPubMed
Vallgren, A., Deusebio, E. & Lindborg, E. 2011 Possible explanation of the atmospheric kinetic and potential energy spectra. Phys. Rev. Lett. 107 (26), 268501.CrossRefGoogle ScholarPubMed
Van Kampen, N. G. 1985 Elimination of fast variables. Phys. Rep. 124 (2), 69160.CrossRefGoogle Scholar
Vanneste, J. 2013 Balance and spontaneous wave generation in geophysical flows. Annu. Rev. Fluid Mech. 45 (1), 147172.CrossRefGoogle Scholar
Vanneste, J. & Yavneh, I. 2004 Exponentially small inertia–gravity waves and the breakdown of quasigeostrophic balance. J. Atmos. Sci. 61 (2), 211223.2.0.CO;2>CrossRefGoogle Scholar
Vautard, R. & Legras, B. 1986 Invariant manifolds, quasi-geostrophy and initialization. J. Atmos. Sci. 43 (6), 565584.2.0.CO;2>CrossRefGoogle Scholar
Waite, M. L. & Bartello, P. 2006 The transition from geostrophic to stratified turbulence. J. Fluid Mech. 568, 89108.CrossRefGoogle Scholar
Waite, M. L. & Snyder, C. 2009 The mesoscale kinetic energy spectrum of a baroclinic life cycle. J. Atmos. Sci. 66 (4), 883901.CrossRefGoogle Scholar
Waite, M. L. & Snyder, C. 2013 Mesoscale energy spectra of moist baroclinic waves. J. Atmos. Sci. 70 (4), 12421256.CrossRefGoogle Scholar
Warn, T. 1997 Nonlinear balance and quasi-geostrophic sets. Atmos.-Ocean 35 (2), 135145.CrossRefGoogle Scholar
Warn, T., Bokhove, O., Shepherd, T. G. & Vallis, G. K. 1995 Rossby number expansions, slaving principles, and balance dynamics. Q. J. R. Meteorol. Soc. 121 (523), 723739.CrossRefGoogle Scholar
Warn, T. & Menard, R. 1986 Nonlinear balance and gravity–inertial wave saturation in a simple atmospheric model. Tellus A 38 (4), 285294.CrossRefGoogle Scholar
Zeitlin, V., Reznik, G. M. & Ben Jelloul, M. 2003 Nonlinear theory of geostrophic adjustment. Part 2. Two-layer and continuously stratified primitive equations. J. Fluid Mech. 491, 207228.CrossRefGoogle Scholar