Skip to main content Accessibility help

Shape and fission instabilities of ferrofluids in non-uniform magnetic fields

  • Thibault Vieu (a1) and Clément Walter (a1)


We study static distributions of ferrofluid submitted to non-uniform magnetic fields. We show how the normal-field instability is modified in the presence of a weak magnetic field gradient. Then we consider a ferrofluid droplet and show how the gradient affects its shape. A rich phase transition phenomenology is found. We also investigate the creation of droplets by successive splits when a magnet is vertically approached from below and derive theoretical expressions which are solved numerically to obtain the number of droplets and their aspect ratio as a function of the field configuration. A quantitative comparison is performed with previous experimental results, as well as with our own experiments, and yields good agreement with the theoretical modelling.


Corresponding author

Email addresses for correspondence:,


Hide All

T.V. and C.W. have equally contributed to this work.



Hide All
Abou, B.1998 Instabilité interfaciale d’une couche de ferrofluide sous champ magnétique normal; étude de la transition hexagones – carrés. PhD thesis, Université Pierre et Marie Curie – Paris VI.
Abou, B., de Surgy, G. N. & Wesfreid, J. E. 1997 Dispersion relation in a ferrofluid layer of any thickness and viscosity in a normal magnetic field; asymptotic regimes. J. Phys. II France 7 (8), 11591171.
Abou, B., Wesfreid, J.-E. & Roux, S. 2000 The normal field instability in ferrofluids: hexagon-square transition mechanism and wavenumber selection. J. Fluid Mech. 416, 217237.
Afkhami, S., Tyler, A. J., Renardy, Y., Renardy, M., Pierre, T. G. St., Woodward, R. C. & Riffle, J. S. 2010 Deformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fields. J. Fluid Mech. 663, 358384.
Andelman, D. & Rosensweig, R. E. 2009 The phenomenology of modulated phases: from magnetic solids and fluids to organic films and polymers. In Polymers, Liquids and Colloids in Electric Fields: Interfacial Instabilites, Orientation and Phase Transitions, pp. 156. World Scientific Publishing Co.
Bacri, J.-C. & Elias, F. 2011 Ferrofluids: a model system of self-organised equilibrium. In Morphogenesis: Origins of Patterns and Shapes (ed. Bourgine, P. & Lesne, A.). Springer.
Bacri, J.-C. & Salin, D. 1982 Instability of ferrofluid magnetic drops under magnetic field. J. Phys. Lett. 43 (17), 649654.
Bacri, J.-C. & Salin, D. 1984 First-order transition in the instability of a magnetic fluid interface. J. Phys. Lett. 45 (11), 559564.
Barkov, Yu. D. & Berkovsky, B. M. 1980 Breakup of a drop of magnetic fluid. Magnetohydrodynamics 16 (3), 228230.
Bashtovoi, V. G., Krakov, M. S. & Reks, A. G. 1985 Instability of a flat layer of magnetic liquid for supercritical magnetic fields. Magnetohydrodynamics 21 (1), 1418.
Behrens, S., Bönnemann, H., Modrow, H., Kempter, V., Riehemann, W., Wiedenmann, A., Odenbach, S., Will, S., Thrams, L., Hergt, R. et al. 2009 Synthesis and characterization. In Colloidal Magnetic Fluids: Basics, Development and Application of Ferrofluids (ed. Odenbach, S.), Lecture Notes in Physics, vol. 763. Springer.
Beleggia, M., De Graef, M. & Millev, Y. 2006 Demagnetization factors of the general ellipsoid: an alternative to the Maxwell approach. Phil. Mag. 86 (16), 24512466.
Berkovsky, B. & Bashtovoi, V. 1980 Instabilities of magnetic fluids leading to a rupture of continuity. IEEE Trans. Magn. 16, 288297.
Berkovsky, B., Bashtovoi, V., Mikhalev, V. & Rex, A. 1987 Experimental study of the stability of bounded volumes of magnetic fluid with a free surface. J. Magn. Magn. Mater. 65 (2), 239241.
Berkovsky, B. M. & Kalikmanov, V. I. 1985 Topological instability of magnetic fluids. J. Phys. Lett. 46 (11), 483491.
Berkovsky, B. M., Medvedev, V. F. & Krakov, M. S. 1993 Magnetic Fluids: Engineering Applications. Oxford University Press.
Blums, E., Cebers, A. & Maiorov, M. M. 1997 Magnetic Fluids. Walter de Gruyter.
Brancher, J. P. & Zouaoui, D. 1987 Equilibrium of a magnetic liquid drop. J. Magn. Magn. Mater. 65 (2), 311314.
Bushueva, C. A., Kostarev, K. G. & Lebedev, A. V. 2011 Evolution of a ferrofluid floating layer under the influence of an inhomogeneous magnetic field. Magnetohydrodynamics 47 (2), 207212.
Camacho, J. M. & Sosa, V. 2013 Alternative method to calculate the magnetic field of permanent magnets with azimuthal symmetry. Revista Mexicana de Física E 59, 817.
Catherall, A. T., Benedict, K. A., King, P. J. & Eaves, L. 2003 Surface instabilities on liquid oxygen in an inhomogeneous magnetic field. Phys. Rev. E 68, 037302.
Cebers, A. & Maiorov, M. M. 1980 Magnetostatic instabilities in plane layers of magnetizable liquids. Magnetohydrodynamics 16 (1), 2127.
Chen, C.-Y. & Cheng, Z.-Y. 2008 An experimental study on Rosensweig instability of a ferrofluid droplet. Phys. Fluids 20 (5), 054105.
Cowley, M. D. & Rosensweig, R. E. 1967 The interfacial stability of a ferromagnetic fluid. J. Fluid Mech. 30 (4), 671688.
Friedrichs, R. & Engel, A. 2000 Statics and dynamics of a single ferrofluid-peak. Eur. Phys. J. B 18 (2), 329335.
Friedrichs, R. & Engel, A. 2001 Pattern and wave number selection in magnetic fluids. Phys. Rev. E 64 (2), 021406.
Gailitis, A. 1977 Formation of the hexagonal pattern on the surface of a ferromagnetic fluid in an applied magnetic field. J. Fluid Mech. 82 (3), 401413.
Gollwitzer, C., Rehberg, I. & Richter, R. 2006 Via hexagons to squares in ferrofluids: experiments on hysteretic surface transformations under variation of the normal magnetic field. J. Phys.: Condens. Matter 18 (38), S2643.
Huebner, A., Sharma, S., Srisa-Art, M., Hollfelder, F., Edel, J. B. & deMello, A. J. 2008 Microdroplets: a sea of applications? Lab on a Chip 8, 12441254.
Ivanov, A., Kantorovich, S., N Reznikov, E., Holm, C., Pshenichnikov, A., V Lebedev, A., Chremos, A. & J Camp, P. 2007 Magnetic properties of polydisperse ferrofluids: a critical comparison between experiment, theory, and computer simulation. Phys. Rev. E 75, 061405.
Knieling, H., Richter, R., Rehberg, I., Matthies, G. & Lange, A. 2007 Growth of surface undulations at the Rosensweig instability. Phys. Rev. E 76, 066301.
Lange, A., Gollwitzer, C., Maretzki, R., Rehberg, I. & Richter, R. 2016 Retarding the growth of the Rosensweig instability unveils a new scaling regime. Phys. Rev. E 93, 043106.
Lange, A., Langer, H. & Engel, A. 2000 Dynamics of a single peak of the Rosensweig instability in a magnetic fluid. Physica D 140 (3), 294305.
Lange, A., Reimann, B. & Richter, R. 2001 Wave number of maximal growth in viscous ferrofluids. Magnetohydrodynamics 37, 261267.
Lange, A., Richter, R. & Tobiska, L. 2007 Linear and nonlinear approach to the Rosensweig instability. GAMM-Mitteilungen 30 (1), 171184.
Mahr, T. & Rehberg, I. 1998 Nonlinear dynamics of a single ferrofluid-peak in an oscillating magnetic field. Physica D 111 (1), 335346.
Neveu-Prin, S., Tourinho, F. A., Bacri, J.-C. & Perzynski, R. 1993 Magnetic birefringence of cobalt ferrite ferrofluids. Colloid Surf. A 80 (1), 110.
Newell, A. J., Williams, W. & Dunlop, D. J. 1993 A generalization of the demagnetizing tensor for nonuniform magnetization. J. Geophys. Res. 98 (B6), 95519555.
Petit, P. A., de Albuquerque, M. P., Cabuil, V. & Molho, P. 1993 Patterns in a ferrofluid film under normal fields: shape of thickness modulations and hysteresis. J. Magn. Magn. Mater. 122 (1), 271276.
Rannacher, D. & Engel, A. 2006 Cylindrical Korteweg–de Vries solitons on a ferrofluid surface. New J. Phys. 8 (6), 108.
Richter, R. & Lange, A. 2009 Surface instabilities of ferrofluids. In Colloidal Magnetic Fluids: Basics, Development and Application of Ferrofluids (ed. Odenbach, S.), Lecture Notes in Physics, vol. 763. Springer.
Rosensweig, R. E. 1985 Ferrohydrodynamics. Cambridge University Press.
Rosensweig, R. E. 1987 Magnetic fluids. Annu. Rev. Fluid Mech. 19, 437463.
Rowghanian, P., Meinhart, C. D. & Campàs, O. 2016 Dynamics of ferrofluid drop deformations under spatially uniform magnetic fields. J. Fluid Mech. 802, 245262.
Rupp, P., Richter, R. & Rehberg, I. 2003 Critical exponents of directed percolation measured in spatiotemporal intermittency. Phys. Rev. E 67, 036209.
Salin, D. 1993 Wave vector selection in the instability of an interface in a magnetic or electric field. Europhys. Lett. 21 (6), 667.
Séro-Guillaume, O. E., Zouaoui, D., Bernardin, D. & Brancher, J. P. 1992 The shape of a magnetic liquid drop. J. Fluid Mech. 241, 215232.
Shliomis, M. I. 1974 Magnetic fluids. Sov. Phys. Uspekhi 17 (2), 153.
Tan, S.-H., Nguyen, N.-T., Yobas, L. & Kang, T. G. 2010 Formation and manipulation of ferrofluid droplets at a microfluidic t-junction. J. Micromech. Microengng 20 (4), 045004.
Timonen, J. V. I., Latikka, M., Leibler, L., Ras, R. H. A. & Ikkala, O. 2013 Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces. Science 341, 253257.
Tyler, A.2010 Ferrofluid droplets in uniform magnetic fields: evidence for field-dependent interfacial tension. PhD thesis, University of Western Australia.
Vislovich, A. N. 1990 Phenomenological equation of static magnetization of magnetic fluids. Magnetohydrodynamics 26, 178183.
Yan, Q., Xuan, S., Ruan, X., Wu, J. & Gong, X. 2015 Magnetically controllable generation of ferrofluid droplets. Microfluid. Nanofluid. 19 (6), 13771384.
Zelazo, R. E. & Melcher, J. R. 1969 Dynamics and stability of ferrofluids: surface interactions. J. Fluid Mech. 39 (1), 124.
Zhu, G.-P., Nguyen, N.-T., Ramanujan, R. V. & Huang, X.-Y. 2011 Nonlinear deformation of a ferrofluid droplet in a uniform magnetic field. Langmuir 27 (24), 1483414841.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Shape and fission instabilities of ferrofluids in non-uniform magnetic fields

  • Thibault Vieu (a1) and Clément Walter (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed