Skip to main content Accessibility help
×
Home

Sedimentation of inertia-less prolate spheroids in homogenous isotropic turbulence with application to non-motile phytoplankton

  • M. Niazi Ardekani (a1), G. Sardina (a1) (a2), L. Brandt (a1), L. Karp-Boss (a3), R. N. Bearon (a4) and E. A. Variano (a5)...

Abstract

Phytoplankton are the foundation of aquatic food webs. Through photosynthesis, phytoplankton draw down $\text{CO}_{2}$ at magnitudes equivalent to forests and other terrestrial plants and convert it to organic material that is then consumed by other planktonic organisms in higher trophic levels. Mechanisms that affect local concentrations and velocities are of primary significance to many encounter-based processes in the plankton, including prey–predator interactions, fertilization and aggregate formation. We report results from simulations of sinking phytoplankton, considered as elongated spheroids, in homogenous isotropic turbulence to answer the question of whether trajectories and velocities of sinking phytoplankton are altered by turbulence. We show in particular that settling spheroids with physical characteristics similar to those of diatoms weakly cluster and preferentially sample regions of downwelling flow, corresponding to an increase of the mean settling speed with respect to the mean settling speed in quiescent fluid. We explain how different parameters can affect the settling speed and what underlying mechanisms might be involved. Interestingly, we observe that the increase in the aspect ratio of the prolate spheroids can affect the clustering and the average settling speed of particles by two mechanisms: first is the effect of aspect ratio on the rotation rate of the particles, which saturates faster than the second mechanism of increasing drag anisotropy.

Copyright

Corresponding author

Email address for correspondence: mehd@mech.kth.se

References

Hide All
Andersson, H. I., Zhao, L. & Barri, M. 2012 Torque-coupling and particle–turbulence interactions. J. Fluid Mech. 696, 319329.
Barton, A. D., Ward, B. A., Williams, R. G. & Follows, M. J. 2014 The impact of fine-scale turbulence on phytoplankton community structure. Limnol. Oceanogr. 4 (1), 3449.
Bec, J., Homann, H. & Ray, S. S. 2014 Gravity-driven enhancement of heavy particle clustering in turbulent flow. Phys. Rev. Lett. 112 (18), 184501.
Butler, J. E. & Shaqfeh, E. S. 2002 Dynamic simulations of the inhomogeneous sedimentation of rigid fibres. J. Fluid Mech. 468, 205237.
Byron, M., Einarsson, J., Gustavsson, K., Voth, G., Mehlig, B. & Variano, E. 2015 Shape-dependence of particle rotation in isotropic turbulence. Phys. Fluids 27 (3), 035101.
Chevillard, L. & Meneveau, C. 2013 Orientation dynamics of small, triaxial–ellipsoidal particles in isotropic turbulence. J. Fluid Mech. 737, 571596.
Clavano, W. R., Boss, E. & Karp-Boss, L. 2007 Inherent optical properties of non-spherical marine-like particles from theory to observation. Oceanogr. Mar. Biol. Annu. Rev. 45, 138.
Dahlkild, A. A. 2011 Finite wavelength selection for the linear instability of a suspension of settling spheroids. J. Fluid Mech. 689, 183202.
Durham, W. M., Climent, E., Barry, M., De Lillo, F., Boffetta, G., Cencini, M. & Stocker, R. 2013 Turbulence drives microscale patches of motile phytoplankton. Nature Commun. 4, 2148.
Eppley, R. W., Holmes, R. W. & Strickland, J. D. H. 1967 Sinking rates of marine phytoplankton measured with a fluorometer. J. Exp. Marine Biol. Ecol. 1 (2), 191208.
Gerbi, G. P., Trowbridge, J. H., Terray, E. A., Plueddemann, A. J & Kukulka, T. 2009 Observations of turbulence in the ocean surface boundary layer: energetics and transport. J. Phys. Oceanogr. 39 (5), 10771096.
Guazzelli, E. & Hinch, J. 2011 Fluctuations and instability in sedimentation. Annu. Rev. Fluid Mech. 43, 97116.
Guazzelli, E. & Morris, J. F. 2011 A Physical Introduction to Suspension Dynamics, vol. 45. Cambridge University Press.
Gustavsson, K. & Tornberg, A. K. 2009 Gravity induced sedimentation of slender fibers. Phys. Fluids 21 (12), 123301.
Gustavsson, K., Vajedi, S. & Mehlig, B. 2014 Clustering of particles falling in a turbulent flow. Phys. Rev. Lett. 112 (21), 214501.
Herzhaft, B. & Guazzelli, E. 1999 Experimental study of the sedimentation of dilute and semi-dilute suspensions of fibres. J. Fluid Mech. 384, 133158.
Herzhaft, B., Guazzelli, E., Mackaplow, M. B. & Shaqfeh, E. S. 1996 Experimental investigation of the sedimentation of a dilute fiber suspension. Phys. Rev. Lett. 77 (2), 290.
Jeffery, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 102, pp. 161179. The Royal Society.
Karp-Boss, L. & Boss, E. 2016 The elongated, the squat and the spherical: selective pressures for phytoplankton shape. In Aquatic Microbial Ecology and Biogeochemistry: A Dual Perspective, pp. 2534. Springer.
Karp-Boss, L. & Jumars, P. A. 1998 Motion of diatom chains in steady shear flow. Limnol. Oceanogr. 43, 17671773.
Koch, D. L. & Shaqfeh, E. S. 1989 The instability of a dispersion of sedimenting spheroids. J. Fluid Mech. 209, 521542.
Lewis, W. M. 1976 Surface/volume ratio: implications for phytoplankton morphology. Science 192 (4242), 885887.
Mackaplow, M. B. & Shaqfeh, E. S. 1998 A numerical study of the sedimentation of fibre suspensions. J. Fluid Mech. 376, 149182.
Malkiel, E., Alquaddoomi, O. & Katz, J. 1999 Measurements of plankton distribution in the ocean using submersible holography. Meas. Sci. Technol. 10 (12), 1142.
Mallier, R. & Maxey, M. 1991 The settling of nonspherical particles in a cellular flow field. Phys. Fluids A 3 (6), 14811494.
Marchioli, C., Fantoni, M. & Soldati, A. 2010 Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow. Phys. Fluids 22 (3), 033301.
Marchioli, C., Zhao, L. & Andersson, H. I. 2016 On the relative rotational motion between rigid fibers and fluid in turbulent channel flow. Phys. Fluids 28 (1), 013301.
Margalef, R. 1978 Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta 1 (4), 493509.
Mitchell, J. G., Yamazaki, H., Seuront, L., Wolk, F. & Li, H. 2008 Phytoplankton patch patterns: seascape anatomy in a turbulent ocean. J. Mar. Syst. 69 (3), 247253.
Nguyen, H., Karp-Boss, L., Jumars, P. A & Fauci, L. 2011 Hydrodynamic effects of spines: a different spin. Limnol. Oceanogr. 1 (1), 110119.
Ni, R., Kramel, S., Ouellette, N. T & Voth, G. A. 2015 Measurements of the coupling between the tumbling of rods and the velocity gradient tensor in turbulence. J. Fluid Mech. 766, 202225.
Olson, J. A. & Kerekes, R. J. 1998 The motion of fibres in turbulent flow. J. Fluid Mech. 377, 4764.
Parsa, S., Calzavarini, E., Toschi, F. & Voth, G. A. 2012 Rotation rate of rods in turbulent fluid flow. Phys. Rev. Lett. 109 (13), 134501.
Parsa, S. & Voth, G. A. 2014 Inertial range scaling in rotations of long rods in turbulence. Phys. Rev. Lett. 112 (2), 024501.
Pumir, A. & Wilkinson, M. 2011 Orientation statistics of small particles in turbulence. New J. Phys. 13 (9), 093030.
Reynolds, C. S. 1989 Physical determinants of phytoplankton succession. In Plankton Ecology, pp. 956. Springer.
Reynolds, C. S. & Irish, A. E. 1997 Modelling phytoplankton dynamics in lakes and reservoirs: the problem of in-situ growth rates. Hydrobiologia 349 (1–3), 517.
Rogallo, R. S.1981 Numerical experiments in homogeneous turbulence. NASA STI/Recon Tech. Rep. N 81, 31508.
Ruiz, J., Macías, D. & Peters, F. 2004 Turbulence increases the average settling velocity of phytoplankton cells. Proc. Natl Acad. Sci. USA 101 (51), 1772017724.
Sardina, G., Picano, F., Brandt, L. & Caballero, R. 2015 Continuous growth of droplet size variance due to condensation in turbulent clouds. Phys. Rev. Lett. 115 (18), 184501.
Seuront, L., Schmitt, F. & Lagadeuc, Y. 2001 Turbulence intermittency, small-scale phytoplankton patchiness and encounter rates in plankton: where do we go from here? Deep-Sea Res. (I) 48 (5), 11991215.
Shapiro, M. & Goldenberg, M. 1993 Deposition of glass fiber particles from turbulent air flow in a pipe. J. Aerosol Sci. 24 (1), 6587.
Shin, H. & Maxey, M. R. 1997 Chaotic motion of nonspherical particles settling in a cellular flow field. Phys. Rev. E 56 (5), 5431.
Shin, M. & Koch, D. L. 2005 Rotational and translational dispersion of fibres in isotropic turbulent flows. J. Fluid Mech. 540, 143173.
Siewert, C., Kunnen, R. P. J., Meinke, M. & Schröder, W. 2014 Orientation statistics and settling velocity of ellipsoids in decaying turbulence. Atmospheric Res. 142, 4556.
Smayda, T. J. 1970 The suspension and sinking of phytoplankton in the sea. Ann. Rev. Oceanogr. Mar. Bioi. 8, 353414.
Smyth, W. D. & Moum, J. N.2000 Ocean turbulence. Tech. Rep. College of Oceanic and Atmospheric Sciences, Oregon State University.
Sournia, A. 1982 Form and function in marine phytoplankton. Biol. Rev. 57 (3), 347394.
Thorpe, S. A. 2007 An Introduction to Ocean Turbulence. Cambridge University Press.
Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375404.
Vincent, A. & Meneguzzi, M. 1994 The dynamics of vorticity tubes in homogeneous turbulence. J. Fluid Mech. 258, 245254.
Voth, G. A. & Soldati, A. 2017 Anisotropic particles in turbulence. Annu. Rev. Fluid Mech. 49, 249276.
Wang, L. P. & Maxey, M. R. 1993 Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 2768.
Wang, L. P. & Stock, D. E. 1993 Dispersion of heavy particles by turbulent motion. J. Atmos. Sci. 50 (13), 18971913.
Young, A. M.2011 Quantifying diatom aspirations: mechanical properties of chain-forming species. PhD thesis, The University of Maine.
Zhan, C., Sardina, G., Lushi, E. & Brandt, L. 2014 Accumulation of motile elongated micro-organisms in turbulence. J. Fluid Mech. 739, 2236.
Zhang, H., Ahmadi, G., Fan, F. G. & McLaughlin, J. B. 2001 Ellipsoidal particles transport and deposition in turbulent channel flows. Intl J. Multiphase Flow 27 (6), 9711009.
Zhao, L., Challabotla, N. R., Andersson, H. I. & Variano, E. A. 2015 Rotation of nonspherical particles in turbulent channel flow. Phys. Rev. Lett. 115 (24), 244501.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Sedimentation of inertia-less prolate spheroids in homogenous isotropic turbulence with application to non-motile phytoplankton

  • M. Niazi Ardekani (a1), G. Sardina (a1) (a2), L. Brandt (a1), L. Karp-Boss (a3), R. N. Bearon (a4) and E. A. Variano (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed