Skip to main content Accessibility help
×
Home

Scattering of internal tides by irregular bathymetry of large extent

  • Yile Li (a1) and Chiang C. Mei (a2)

Abstract

We present an analytical theory of scattering of tide-generated internal gravity waves in a continuously stratified ocean with a randomly rough seabed. Based on a linearized approximation, the idealized case of constant mean sea depth and Brunt–Väisälä frequency is considered. The depth fluctuation is assumed to be a stationary random function of space, characterized by small amplitude and a correlation length comparable to the typical wavelength. For both one- and two-dimensional topographies the effects of scattering on the wave phase over long distances are derived explicitly by the method of multiple scales. For one-dimensional topography, numerical results are compared with Bühler & Holmes-Cerfon (J. Fluid Mech., vol. 678, 2011, pp. 271–293), computed by the method of characteristics. For two-dimensional topography, new results are presented for both statistically isotropic and anisotropic cases.

Copyright

Corresponding author

Email address for correspondence: ccmei@mit.edu

References

Hide All
Abramowitz, M. & Stegun, I. A. 1972 Handbook of Mathematical Functions. Dover.
Alam, M. R. & Mei, C. C. 2007 Attenuation of long interfacial waves over a randomly rough seabed. J. Fluid Mech. 587, 7396.
Alam, M. R. & Mei, C. C. 2008 Ships advancing near the critical speed in a shallow channel with a randomly uneven bed. J. Fluid Mech. 616, 397417.
Arfken, G. B. & Weber, H. J. 2005 Mathematical Methods for Physicists. 6th edn. Harcourt.
Baines, P. G. 1971a The reflextion of internal/inertial waves from bumpy surfaces. J. Fluid Mech. 46, 273294.
Baines, P. G. 1971b The reflextion of internal/inertial waves from bumpy surfaces. Part 2, Split reflection and diffraction. J. Fluid Mech. 49, 113231.
Baines, P. G. 1973 The generation of internal tides by bumpy topography. Deep-Sea Res. 20, 179205.
Baines, P. G. 1974 The generation of internal tides by steep continental slopes. Phil. Trans. R. Soc. Lond. A 277, 2758.
Baines, P. G. 1982 On internal tide generation models. Deep-Sea Res. 29, 307338.
Balmforth, N. J., Ierley, G. R. & Young, W. R. 2002 Tidal conversion by subcritical topography. J. Phys. Oceanogr. 32, 29002914.
Balmforth, N. J. & Peacock, T. 2009 Tidal conversion by supercritical topography. J. Phys. Oceanogr. 30, 19651969.
Bell, T. H. Jr. 1975 Statistical features of seabed topography. Deep-Sea Res. 22, 883892.
Bühler, O. & Holmes-Cerfon, M. 2011 Decay of an internal tide due to random topography in the ocean. J. Fluid Mech. 678, 271293.
Echeverri, P. & Peacock, T. 2010 Internal tide generation by arbitrary two-dimensional topography. J. Fluid Mech. 659, 247266.
Goff, J. A. & Jordan, T. H. 1988 Stochastic modelling of seafloor morphology: inversion of sea beam data for second order statistics. J. Geophys. Res. 93 (B11), 1358913608.
Grataloup, G. & Mei, C. C. 2003 Localization of harmonics generated in nonlinear shallow water waves. Phys. Rev. E 68, 026314.
Hara, T. & Mei, C. C. 1987 Bragg scattering of surface waves by periodic bars: theory and experiment. J. Fluid Mech. 178, 5976.
Llewellyn Smith, S. G. & Young, W. R. 2002 Conversion of the barotropic tide. J. Phys. Oceanogr. 32, 15541566.
Llewellyn Smith, S. G. & Young, W. R. 2003 Tidal conversion at a very steep ridge. J. Fluid Mech. 3495, 171191.
Luz, A. M. & Nachbin, A. 2013 Wave packets defocussing due to a highly disordered bathymetry. Stud. Appl. Maths 130, 393416.
Mei, C. C. 1985 Resonant reflection of surface water waves by periodic sandbars. J. Fluid Mech. 152, 315335.
Mei, C. C. & Hancock, M. J. 2003 Weakly nonlinear surface waves over a random seabed. J. Fluid Mech. 475, 247268.
Mei, C. C., Hara, T. & Naciri, M. 1988 Note on Bragg scattering of water waves by parallel bars on the seabed. J. Fluid Mech. 186, 147162.
Mei, C. C. & Li, Y. 2004 Evolution of solitons over a randomly rough seabed. Phys. Rev. E 70, 016302.
Mowbray, D. E. & Rarity, B. S. H. 1967 A theoretical and experimental investigation of the phase configuration of internal waves of small amplitude in a density stratified liquid. J. Fluid Mech. 28, 116.
Muller, P. & Liu, X. 2000 Scattering of internal waves of finite topography in two dimensions, part I: theory and case studies. J. Phys. Oceanogr. 30, 532549.
Muller, P. & Xu, N. 1992 Scattering of oceanic internal gravity waves off random bottom topography. J. Phys. Oceanogr. 22, 474488.
Nachbin, A. 1995 The localization length of randomly scattered water waves. J. Fluid Mech. 296, 353372.
Nikurashin, M. & Ferrari, R. 2010a Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: theory. J. Phys. Oceanogr. 40, 10551074.
Nikurashin, M. & Ferrari, R. 2010b Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: application to Southern Ocean. J. Phys. Oceanogr. 40, 20252042.
Papoulis, A. 1965 Probability, Random Variables and Stochastic Processes. McGraw-Hill.
Pétrélis, F., Llewellyn Smith, S. G. & Young, W. R. 2006 Tidal conversion at a submarine ridge. J. Phys. Oceanogr. 36, 10531071.
Phillips, O. M. 1966 The Dynamics of the Upper Ocean. Cambridge University Press.
Pihl, J. H., Mei, C. C. & Hancock, M. J. 2002 Surface gravity waves over a two-dimensional random seabed. Phys. Rev. E 66, 016611.
Robinson, R. M. 1969 The effects of a vertical barrier on internal waves. Deep-Sea Res. 16, 421429.
Spanier, J. & Oldham, K. B. 1987 An Atlas of Functions. 2nd edn. Springer.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed