Skip to main content Accessibility help

Scaling of decaying shallow axisymmetric swirl flows

  • M. DURAN-MATUTE (a1), L. P. J. KAMP (a1), R. R. TRIELING (a1) and G. J. F. van HEIJST (a1)


There is a lack of rigour in the usual explanation for the scaling of the vertical velocity of shallow flows based on geometrical arguments and the continuity equation. In this paper we show, by studying shallow axisymmetric swirl flows, that the dynamics of the flow are crucial to determine the proper scaling. In addition, we present two characteristic scaling parameters for such flows: Reδ2 for the radial velocity and Reδ3 for the vertical velocity, where Re is the Reynolds number of the swirl flow and δ=H/L is the flow aspect ratio with H the fluid depth and L a typical horizontal length scale. This scaling contradicts the common assumption that the vertical velocity should scale with the primary motion proportional to the aspect ratio δ. Moreover, if this scaling applies, then the primary flow can be considered as quasi-two-dimensional. Numerical simulations of a decaying Lamb–Oseen vortex served to test the analytical results and to determine their range of validity. It was found that the primary flow can be considered as quasi-two-dimensional only if δRe1/2≲3 and δRe1/3≲1.


Corresponding author

Email address for correspondence:


Hide All
Akkermans, R. A. D., Kamp, L. P. J., Clercx, H. J. H. & van Heijst, G. J. F. 2008 Intrinsic three-dimensionality in electromagnetically driven shallow flows. Europhys. Lett. 83, 24001.
Berger, S. A., Talbot, L. & Yao, L.-S. 1983 Flow in curved pipes. Annu. Rev. Fluid Mech. 15, 461512.
Clercx, H. J. H., van Heijst, G. J. F. & Zoeteweij, M. L. 2003 Quasi-two-dimensional turbulence in shallow fluid layers: the role of bottom friction and fluid layer depth. Phys. Rev. E 67, 066303.
Comsol AB 2009 Comsol 3.5, User's Guide. Tegnérgatan 23, SE-111 40 Stockholm, Sweden.
Dean, W. R. 1927 XVI. Note on the motion of fluid in a curved pipe. Phil. Mag. Ser. 7 4, 208223.
Dolzhanskii, F. V., Krymov, V. A. & Manin, D. Yu. 1992 An advanced experimental investigation of quasi-two-dimensional shear flows. J. Fluid Mech. 241, 705722.
Hopfinger, E. J. & van Heijst, G. J. F. 1993 Vortices in rotating fluids. Annu. Rev. Fluid Mech. 25, 241289.
Jirka, G. H. & Uijttewaal, W. S. J. 2004 Shallow flows: a definition. In Shallow Flows (ed. Jirka, G. H. & Uijttewaal, W. S. J.), pp. 311. Taylor & Francis.
Paret, J. & Tabeling, P. 1997 Experimental observation of the two-dimensional inverse energy cascade. Phys. Rev. Lett. 79, 41624165.
Satijn, M. P., Cense, A. W., Verzicco, R., Clercx, H. J. H. & van Heijst, G. J. F. 2001 Three-dimensional structure and decay properties of vortices in shallow fluid layers. Phys. Fluids 13, 19321945.
Sous, D., Bonneton, N. & Sommeria, J. 2005 Transition from deep to shallow water layer: formation of vortex dipoles. Eur. J. Mech B 24, 1932.
Tabeling, P., Burkhart, S., Cardoso, O. & Willaime, H. 1991 Experimental study of freely decaying two-dimensional turbulence. Phys. Rev. Lett. 67, 37723775.
MathJax is a JavaScript display engine for mathematics. For more information see

Scaling of decaying shallow axisymmetric swirl flows

  • M. DURAN-MATUTE (a1), L. P. J. KAMP (a1), R. R. TRIELING (a1) and G. J. F. van HEIJST (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed