Hostname: page-component-84b7d79bbc-tsvsl Total loading time: 0 Render date: 2024-07-28T00:59:14.167Z Has data issue: false hasContentIssue false

Scale interactions in velocity and pressure within a turbulent boundary layer developing over a staggered-cube array

Published online by Cambridge University Press:  21 January 2021

M.A. Ferreira*
Affiliation:
Faculty of Engineering and Physical Sciences, University of Southampton, Boldrewood Campus, SouthamptonSO16 7QF, UK
B. Ganapathisubramani
Affiliation:
Faculty of Engineering and Physical Sciences, University of Southampton, Boldrewood Campus, SouthamptonSO16 7QF, UK
*
Email address for correspondence: m.aguiar-ferreira@soton.ac.uk

Abstract

We experimentally investigate the surface drag characteristics of a staggered-distributed cube array and its interaction with the turbulent structure of the overlying flow. Instantaneous maps of the pressure field, inferred from in-plane velocity data are used to estimate the forces acting on a target roughness element. Coupled statistics of the force in combination with conditional flow analysis and extended proper orthogonal decomposition (POD) of the pressure field, based on the velocity POD modes, elucidate the relevant mechanisms responsible for surface drag generation. The results show that turbulent motions, at different scales, leave an imprint on the pressure field. Specifically, positive and negative fluctuations are generally associated with flow regions experiencing a local deceleration and acceleration, respectively. Although large-scale motions were found to be the single greatest contributor to the fluctuating pressure field, their direct influence on the surface drag fluctuations appears to be mitigated by the relative size of the considerably smaller roughness obstacles. We hypothesise that a pressure wave induced by the passage of alternating high- and low-momentum regions evenly affects the flow field over a broad region, coupling the forces on the windward and leeward sides of the cube, which, in turn, partially cancel each other out. Uncorrelated, intermediate and small-scale pressure events are thus more important to the overall drag fluctuations. While the direct influence of the large-scale structures on the surface drag may be smaller than expected, the results suggest that they are still significant for the role they play in modulating the small-scale pressure events in the canopy region.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abe, H., Kawamura, H. & Choi, H. 2004 Very large-scale structures and their effects on the wall shear-stress fluctuations in a turbulent channel flow up to $Re\,\tau = 640$. Trans. ASME: J. Fluids Engng 126 (5), 835843.Google Scholar
Adrian, R.J., Meinhart, C.D. & Tomkins, C.D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.10.1017/S0022112000001580CrossRefGoogle Scholar
Alfredsson, P.H., Johansson, A.V., Haritonidis, J.H. & Eckelmann, H. 1988 The fluctuating wall-shear stress and the velocity field in the viscous sublayer. Phys. Fluids 31 (5), 10261033.10.1063/1.866783CrossRefGoogle Scholar
Anderson, W. 2016 Amplitude modulation of streamwise velocity fluctuations in the roughness sublayer: evidence from large-eddy simulations. J. Fluid Mech. 789, 567588.10.1017/jfm.2015.744CrossRefGoogle Scholar
Antoranz, A., Ianiro, A., Flores, O. & García-Villalba, M. 2018 Extended proper orthogonal decomposition of non-homogeneous thermal fields in a turbulent pipe flow. Intl J. Heat Mass Transfer 118, 12641275.10.1016/j.ijheatmasstransfer.2017.11.076CrossRefGoogle Scholar
Aubry, N., Guyonnet, R. & Lima, R. 1991 Spatiotemporal analysis of complex signals: theory and applications. J. Stat. Phys. 64 (3–4), 683739.10.1007/BF01048312CrossRefGoogle Scholar
Baars, W.J., Hutchins, N. & Marusic, I. 2016 Spectral stochastic estimation of high-Reynolds-number wall-bounded turbulence for a refined inner-outer interaction model. Phys. Rev. Fluids 1 (5), 054406.10.1103/PhysRevFluids.1.054406CrossRefGoogle Scholar
Basley, J., Perret, L. & Mathis, R. 2018 Spatial modulations of kinetic energy in the roughness sublayer. J. Fluid Mech. 850, 584610.10.1017/jfm.2018.458CrossRefGoogle Scholar
Berkooz, G., Holmes, P. & Lumley, J.L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25 (1), 539575.10.1146/annurev.fl.25.010193.002543CrossRefGoogle Scholar
Bhaganagar, K., Kim, J. & Coleman, G. 2004 Effect of roughness on wall-bounded turbulence. Flow Turbul. Combust. 72 (2–4), 463492.10.1023/B:APPL.0000044407.34121.64CrossRefGoogle Scholar
Blackman, K. & Perret, L. 2016 Non-linear interactions in a boundary layer developing over an array of cubes using stochastic estimation. Phys. Fluids 28 (9), 095108.10.1063/1.4962938CrossRefGoogle Scholar
Blackman, K., Perret, L. & Calmet, I. 2018 a Energy transfer and non-linear interactions in an urban boundary layer using stochastic estimation. J. Turbul. 19 (10), 849867.10.1080/14685248.2018.1520996CrossRefGoogle Scholar
Blackman, K., Perret, L. & Mathis, R. 2019 Assessment of inner–outer interactions in the urban boundary layer using a predictive model. J. Fluid Mech. 875, 4470.10.1017/jfm.2019.427CrossRefGoogle Scholar
Blackman, K., Perret, L. & Savory, E. 2018 b Effects of the upstream-flow regime and canyon aspect ratio on non-linear interactions between a street-canyon flow and the overlying boundary layer. Boundary-Layer Meteorol. 169 (3), 537558.10.1007/s10546-018-0378-yCrossRefGoogle Scholar
Borée, J. 2003 Extended proper orthogonal decomposition: a tool to analyse correlated events in turbulent flows. Exp. Fluids 35 (2), 188192.10.1007/s00348-003-0656-3CrossRefGoogle Scholar
Bull, M.K. 1967 Wall-pressure fluctuations associated with subsonic turbulent boundary layer flow. J. Fluid Mech. 28 (4), 719754.10.1017/S0022112067002411CrossRefGoogle Scholar
Cameron, S.M., Nikora, V.I. & Marusic, I. 2019 Drag forces on a bed particle in open-channel flow: effects of pressure spatial fluctuations and very-large-scale motions. J. Fluid Mech. 863, 494512.10.1017/jfm.2018.1003CrossRefGoogle Scholar
Castro, I.P., Cheng, H. & Reynolds, R. 2006 Turbulence over urban-type roughness: deductions from wind-tunnel measurements. Boundary-Layer Meteorol. 118 (1), 109131.10.1007/s10546-005-5747-7CrossRefGoogle Scholar
Chang, P.A., Piomelli, U. & Blake, W.K. 1999 Relationship between wall pressure and velocity-field sources. Phys. Fluids 11 (11), 34343448.10.1063/1.870202CrossRefGoogle Scholar
Cheng, H. & Castro, I.P. 2002 Near wall flow over urban-like roughness. Boundary-Layer Meteorol. 104, 229259.10.1023/A:1016060103448CrossRefGoogle Scholar
Christensen, K.T. & Adrian, R.J. 2001 Statistical evidence of hairpin vortex packets in wall turbulence. J. Fluid Mech. 431, 433.CrossRefGoogle Scholar
Coceal, O., Dobre, A., Thomas, T.G. & Belcher, S.E. 2007 Structure of turbulent flow over regular arrays of cubical roughness. J. Fluid Mech. 589, 375409.10.1017/S002211200700794XCrossRefGoogle Scholar
Coles, D. 1953 Measurements in the boundary layer on a smooth flat plate in supersonic flow. PhD thesis, California Institute of Technology, Pasadena, CA.Google Scholar
Corcos, G.M. 1963 Resolution of pressure in turbulence. J. Acoust. Soc. Am. 35 (2), 192199.10.1121/1.1918431CrossRefGoogle Scholar
De Graaff, D.B. & Eaton, J.K. 2000 Reynolds-number scaling of the flat-plate turbulent boundary layer. J. Fluid Mech. 422, 319346.10.1017/S0022112000001713CrossRefGoogle Scholar
Djenidi, L., Elavarasan, R. & Antonia, R.A. 1999 The turbulent boundary layer over transverse square cavities. J. Fluid Mech. 395, 271294.10.1017/S0022112099005911CrossRefGoogle Scholar
Elliott, J.A. 1970 Microscale pressure fluctuations measured within the lower atmospheric boundary layer. PhD thesis, University of British Columbia.Google Scholar
Ferreira, M.A. & Ganapathisubramani, B. 2020 a Dataset: PIV-based pressure estimation in the canopy of urban-like roughness.10.1007/s00348-020-2904-1CrossRefGoogle Scholar
Ferreira, M.A. & Ganapathisubramani, B. 2020 b PIV-based pressure estimation in the canopy of urban-like roughness. Exp. Fluids 61 (3), 113.Google Scholar
Flack, K.A., Schultz, M.P. & Connelly, J.S. 2007 Examination of a critical roughness height for outer layer similarity. Phys. Fluids 19 (9), 095104.10.1063/1.2757708CrossRefGoogle Scholar
Flack, K.A. & Schultz, M.P. 2010 Review of hydraulic roughness scales in the fully rough regime. Trans. ASME: J. Fluids Engng 132 (4).Google Scholar
Flack, K.A., Schultz, M.P. & Shapiro, T.A. 2005 Experimental support for townsend's Reynolds number similarity hypothesis on rough walls. Phys. Fluids 17 (3), 035102.CrossRefGoogle Scholar
Ganapathisubramani, B., Hutchins, N., Hambleton, W.T., Longmire, E.K. & Marusic, I. 2005 Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations. J. Fluid Mech. 524, 5780.10.1017/S0022112004002277CrossRefGoogle Scholar
Ganapathisubramani, B., Hutchins, N., Monty, J.P., Chung, D. & Marusic, I. 2012 Amplitude and frequency modulation in wall turbulence. J. Fluid Mech. 712, 6191.10.1017/jfm.2012.398CrossRefGoogle Scholar
Ganapathisubramani, B., Longmire, E.K. & Marusic, I. 2003 Characteristics of vortex packets in turbulent boundary layers. J. Fluid Mech. 478, 3546.10.1017/S0022112002003270CrossRefGoogle Scholar
Grass, A.J., Stuart, R.J. & Mansour-Tehrani, M. 1991 Vortical structures and coherent motion in turbulent flow over smooth and rough boundaries. Phil. Trans. R. Soc. Lond. A 336 (1640), 3565.Google Scholar
Hambleton, W.T., Hutchins, N. & Marusic, I. 2006 Simultaneous orthogonal-plane particle image velocimetry measurements in a turbulent boundary layer. J. Fluid Mech. 560, 5364.10.1017/S0022112006000292CrossRefGoogle Scholar
Hoyas, S. & Jiménez, J. 2006 Scaling of the velocity fluctuations in turbulent channels up to Re $\tau = 2003$. Phys. Fluids 18 (1), 011702.10.1063/1.2162185CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 a Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.10.1017/S0022112006003946CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 b Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. Lond. A 365 (1852), 647664.Google ScholarPubMed
Hutchins, N., Monty, J.P., Ganapathisubramani, B., Ng, H.C.H. & Marusic, I. 2011 Three-dimensional conditional structure of a high-Reynolds-number turbulent boundary layer. J. Fluid Mech. 673, 255285.CrossRefGoogle Scholar
Jackson, P.S. 1981 On the displacement height in the logarithmic velocity profile. J. Fluid Mech. 111, 1525.10.1017/S0022112081002279CrossRefGoogle Scholar
Johansson, A.V., Her, J.-Y. & Haritonidis, J.H. 1987 On the generation of high-amplitude wall-pressure peaks in turbulent boundary layers and spots. J. Fluid Mech. 175, 119142.10.1017/S0022112087000326CrossRefGoogle Scholar
Kim, K.C. & Adrian, R.J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11 (2), 417422.CrossRefGoogle Scholar
Kline, S.J., Reynolds, W.C., Schraub, F.A. & Runstadler, P.W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30 (4), 741773.10.1017/S0022112067001740CrossRefGoogle Scholar
Kobashi, Y., Komoda, H. & Ichijo, M. 1984 Wall pressure fluctuation and the turbulence structure of a boundary layer. In Turbulence and Chaotic Phenomena in Fluids, pp. 461–466. Elsevier.Google Scholar
Kobashi, Y. 1957 Measurements of pressure fluctuation in the wake of cylinder. J. Phys. Soc. Japan 12 (5), 533543.CrossRefGoogle Scholar
Kobashi, Y. & Ichijo, M. 1986 Wall pressure and its relation to turbulent structure of a boundary layer. Exp. Fluids 4 (1), 4955.10.1007/BF00316786CrossRefGoogle Scholar
Krogstad, P.-Å. & Antonia, R.A. 1994 Structure of turbulent boundary layers on smooth and rough walls. J. Fluid Mech. 277, 121.10.1017/S0022112094002661CrossRefGoogle Scholar
Krogstad, P.-Å., Antonia, R.A. & Browne, L.W.B. 1992 Comparison between rough-and smooth-wall turbulent boundary layers. J. Fluid Mech. 245, 599617.10.1017/S0022112092000594CrossRefGoogle Scholar
Lee, J.H., Seena, A., Lee, S.-H. & Sung, H.J. 2012 Turbulent boundary layers over rod-and cube-roughened walls. J. Turbul. 13 (1), N40.CrossRefGoogle Scholar
Lee, J.H., Sung, H.J. & Krogstad, P.-Å. 2011 Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall. J. Fluid Mech. 669, 397431.10.1017/S0022112010005082CrossRefGoogle Scholar
Leonardi, S., Orlandi, P., Djenidi, L. & Antonia, R.A. 2004 Structure of turbulent channel flow with square bars on one wall. Intl J. Heat Fluid Flow 25 (3), 384392.10.1016/j.ijheatfluidflow.2004.02.022CrossRefGoogle Scholar
Lumley, J.L. 1967 The structure of inhomogeneous turbulent flows. Atmospheric turbulence and radio wave propagation.Google Scholar
Marusic, I. 2001 On the role of large-scale structures in wall turbulence. Phys. Fluids 13 (3), 735743.10.1063/1.1343480CrossRefGoogle Scholar
Marusic, I., Mathis, R. & Hutchins, N. 2010 Predictive model for wall-bounded turbulent flow. Science 329 (5988), 193196.10.1126/science.1188765CrossRefGoogle ScholarPubMed
Mathis, R., Hutchins, N. & Marusic, I. 2009 Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311337.10.1017/S0022112009006946CrossRefGoogle Scholar
Mathis, R., Hutchins, N. & Marusic, I. 2011 a A predictive inner–outer model for streamwise turbulence statistics in wall-bounded flows. J. Fluid Mech. 681, 537566.10.1017/jfm.2011.216CrossRefGoogle Scholar
Mathis, R., Marusic, I., Hutchins, N. & Sreenivasan, K.R. 2011 b The relationship between the velocity skewness and the amplitude modulation of the small scale by the large scale in turbulent boundary layers. Phys. Fluids 23 (12), 121702.10.1063/1.3671738CrossRefGoogle Scholar
Maurel, S., Borée, J. & Lumley, J.L. 2001 Extended proper orthogonal decomposition: application to jet/vortex interaction. Flow Turbul. Combust. 67 (2), 125136.10.1023/A:1014050204350CrossRefGoogle Scholar
Mejia-Alvarez, R., Wu, Y. & Christensen, K.T. 2014 Observations of meandering superstructures in the roughness sublayer of a turbulent boundary layer. Intl J. Heat Fluid Flow 48, 4351.10.1016/j.ijheatfluidflow.2014.04.006CrossRefGoogle Scholar
Metzger, M.M. & Klewicki, J.C. 2001 A comparative study of near-wall turbulence in high and low Reynolds number boundary layers. Phys. Fluids 13 (3), 692701.10.1063/1.1344894CrossRefGoogle Scholar
Nadeem, M., Lee, J.H., Lee, J. & Sung, H.J. 2015 Turbulent boundary layers over sparsely-spaced rod-roughened walls. Intl J. Heat Fluid Flow 56, 1627.10.1016/j.ijheatfluidflow.2015.06.006CrossRefGoogle Scholar
Naguib, A.M., Wark, C.E. & Juckenhöfel, O. 2001 Stochastic estimation and flow sources associated with surface pressure events in a turbulent boundary layer. Phys. Fluids 13 (9), 26112626.CrossRefGoogle Scholar
Naka, Y., Stanislas, M., Foucaut, J.-M., Coudert, S., Laval, J.-P. & Obi, S. 2015 Space–time pressure–velocity correlations in a turbulent boundary layer. J. Fluid Mech. 771, 624675.10.1017/jfm.2015.158CrossRefGoogle Scholar
Offen, G.R. & Kline, S.J. 1974 Combined dye-streak and hydrogen-bubble visual observations of a turbulent boundary layer. J. Fluid Mech. 62 (2), 223239.10.1017/S0022112074000656CrossRefGoogle Scholar
Örlü, R. & Schlatter, P. 2011 On the fluctuating wall-shear stress in zero pressure-gradient turbulent boundary layer flows. Phys. Fluids 23 (2), 021704.10.1063/1.3555191CrossRefGoogle Scholar
Patwardhan, S.S. & Ramesh, O.N. 2014 Scaling of pressure spectrum in turbulent boundary layers. J. Phys.: Conf. Ser. 506, 012011.Google Scholar
Perret, L. & Kerhervé, F. 2019 Identification of very large scale structures in the boundary layer over large roughness elements. Exp Fluids 60 (6), 97.10.1007/s00348-019-2749-7CrossRefGoogle Scholar
Perret, L. & Rivet, C. 2013 Dynamics of a turbulent boundary layer over cubical roughness elements: insight from PIV measurements and pod analysis. In TSFP Digital Library Online. Begel House Inc.Google Scholar
Perret, L. & Savory, E. 2013 Large-scale structures over a single street canyon immersed in an urban-type boundary layer. Boundary-Layer Meteorol. 148 (1), 111131.CrossRefGoogle Scholar
Perry, A.E. & Abell, C.J. 1977 Asymptotic similarity of turbulence structures in smooth-and rough-walled pipes. J. Fluid Mech. 79 (4), 785799.10.1017/S0022112077000457CrossRefGoogle Scholar
Placidi, M. & Ganapathisubramani, B. 2018 Turbulent flow over large roughness elements: effect of frontal and plan solidity on turbulence statistics and structure. Boundary-Layer Meteorol. 167, 99121.10.1007/s10546-017-0317-3CrossRefGoogle ScholarPubMed
Rao, K.N., Narasimha, R. & Narayanan, M.A.B. 1971 The bursting phenomenon in a turbulent boundary layer. J. Fluid Mech. 48 (2), 339352.CrossRefGoogle Scholar
Raupach, M.R. & Shaw, R.H. 1982 Averaging procedures for flow within vegetation canopies. Boundary-Layer Meteorol. 22 (1), 7990.10.1007/BF00128057CrossRefGoogle Scholar
Reynolds, R.T. & Castro, I.P. 2008 Measurements in an urban-type boundary layer. Exp. Fluids 45, 141156.10.1007/s00348-008-0470-zCrossRefGoogle Scholar
Robinson, S.K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.10.1146/annurev.fl.23.010191.003125CrossRefGoogle Scholar
Runstadler, P.W., Kline, S.J. & Reynolds, W.C. 1963 An experimental investigation of the flow structure of the turbulent boundary layer. Tech. Rep. MD-8. Stanford University.Google Scholar
Schewe, G. 1983 On the structure and resolution of wall-pressure fluctuations associated with turbulent boundary-layer flow. J. Fluid Mech. 134, 311328.CrossRefGoogle Scholar
Schlatter, P. & Örlü, R. 2010 Quantifying the interaction between large and small scales in wall-bounded turbulent flows: a note of caution. Phys. Fluids 22 (5), 051704.CrossRefGoogle Scholar
Sieber, M., Paschereit, C.O. & Oberleithner, K. 2016 Spectral proper orthogonal decomposition. J. Fluid Mech. 792, 798828.10.1017/jfm.2016.103CrossRefGoogle Scholar
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl. Maths 45 (3), 561571.CrossRefGoogle Scholar
Squire, D.T., Baars, W.J., Hutchins, N. & Marusic, I. 2016 Inner–outer interactions in rough-wall turbulence. J. Turbul. 17 (12), 11591178.CrossRefGoogle Scholar
Sreenivasan, K.R., Dhruva, B. & Gil, I.S. 1999 The effects of large scales on the inertial range in high-Reynolds-number turbulence. arXiv:chao-dyn/9906041.Google Scholar
Thomas, A.S.W. & Bull, M.K. 1983 On the role of wall-pressure fluctuations in deterministic motions in the turbulent boundary layer. J. Fluid Mech. 128, 283322.CrossRefGoogle Scholar
Tomkins, C.D. & Adrian, R.J. 2003 Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 3774.10.1017/S0022112003005251CrossRefGoogle Scholar
Towne, A., Schmidt, O.T. & Colonius, T. 2018 Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821867.CrossRefGoogle Scholar
Townsend, A.A. 1976 Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.Google Scholar
Tsinober, A. 2001 An Informal Introduction to Turbulence, vol. 63. Springer Science & Business Media.Google Scholar
Tsuji, Y., Fransson, J.H.M., Alfredsson, P.H. & Johansson, A.V. 2007 Pressure statistics and their scaling in high-Reynolds-number turbulent boundary layers. J. Fluid Mech. 585, 1.CrossRefGoogle Scholar
Tsuji, Y., Marusic, I. & Johansson, A.V. 2016 Amplitude modulation of pressure in turbulent boundary layer. Intl J. Heat Fluid Flow 61, 211.10.1016/j.ijheatfluidflow.2016.05.019CrossRefGoogle Scholar
Van der Kindere, J.W., Laskari, A., Ganapathisubramani, B. & de Kat, R. 2019 Pressure from 2D snapshop PIV. Exp. Fluids 60 (2), 32.10.1007/s00348-019-2678-5CrossRefGoogle Scholar
Volino, R.J., Schultz, M.P. & Flack, K.A. 2007 Turbulence structure in rough-and smooth-wall boundary layers. J. Fluid Mech. 592, 263293.CrossRefGoogle Scholar
Willmarth, W.W. 1975 Pressure fluctuations beneath turbulent boundary layers. Annu. Rev. Fluid Mech. 7 (1), 1336.10.1146/annurev.fl.07.010175.000305CrossRefGoogle Scholar
Willmarth, W.W. 1956 Wall pressure fluctuations in a turbulent boundary layer. J. Acoust. Soc. Am. 28 (6), 10481053.CrossRefGoogle Scholar
Willmarth, W.W. & Wooldridge, C.E. 1963 Measurements of the correlation between the fluctuating velocities and the fluctuating wall pressure in a thick turbulent boundary layer. Tech. Rep. AGARD.Google Scholar
Wu, S., Christensen, K.T. & Pantano, C. 2020 A study of wall shear stress in turbulent channel flow with hemispherical roughness. J. Fluid Mech. 885.CrossRefGoogle Scholar
Zhu, W., van Hout, R. & Katz, J. 2007 On the flow structure and turbulence during sweep and ejection events in a wind-tunnel model canopy. Boundary-Layer Meteorol. 124 (2), 205233.10.1007/s10546-007-9174-9CrossRefGoogle Scholar