Skip to main content Accessibility help
×
×
Home

The role of gravity in the prediction of the circular hydraulic jump radius for high-viscosity liquids

  • Yunpeng Wang (a1) and Roger E. Khayat (a1)

Abstract

The free-surface flow formed by a circular jet impinging on a stationary disk is analysed theoretically. We develop a simple and coherent model to predict the location and height of the jump for high-viscosity liquids. The study explores the effect of gravity in the supercritical flow. The formulation reduces to a problem, involving only one parameter: $\unicode[STIX]{x1D6FC}=Re^{1/3}Fr^{2}$ , where $Re$ and $Fr$ are the Reynolds and Froude numbers based on the flow rate and the jet radius. We show that the jump location coincides with the singularity in the thin-film equation when gravity is included, suggesting that the jump location can be determined without the knowledge of downstream flow conditions such as the jump height, the radius of the disk, which corroborates earlier observations in the case of type I circular hydraulic jumps. Consequently, there is no need for a boundary condition downstream to determine the jump radius. Our results corroborate well existing measurements and numerical simulation. Our predictions also confirm the constancy of the Froude number $Fr_{J}$ based on the jump radius and height as suggested by the measurements of Duchesne et al. (Europhys. Lett., vol. 107, 2014, 54002). We establish theoretically the conditions for $Fr_{J}$ to remain independent of the flow rate. The subcritical flow and the height of the hydraulic jump are sought subject to the thickness at the edge of the disk, comprising contributions based on the capillary length and minimum flow energy. The thickness at the edge of the disk appears to be negligibly small for high-viscosity liquids.

Copyright

Corresponding author

Email address for correspondence: rkhayat@uwo.ca

References

Hide All
Avedisian, C. T. & Zhao, Z. 2000 The circular hydraulic jump in low gravity. Proc. R. Soc. Lond. A 456, 21272151.
Baonga, J. B., Gualous, H. L. & Imbert, M. 2006 Experimental study of hydrodynamic and heat transfer of free liquid jet impinging a flat circular heated disk. Appl. Therm. Engng 26, 11251138.
Benilov, E. S. 2015 Hydraulic jumps in a shallow flow down a slightly inclined substrate. J. Fluid Mech. 782, 524.
Bhagat, R. K., Jha, N. K., Linden, P. F. & Wilson, D. I. 2018 On the origin of the circular hydraulic jump in a thin liquid film. J. Fluid Mech. 851, R5.
Bohr, T., Dimon, P. & Putzkaradze, V. 1993 Shallow-water approach to the circular hydraulic jump. J. Fluid Mech. 254, 635648.
Bohr, T., Ellegaard, C., Hansen, A. E. & Haaning, A. 1996 Hydraulic jumps, flow separation and wave breaking: an experimental study. Physica B 228, 110.
Bohr, T., Putkaradze, V. & Watanabe, S. 1997 Averaging theory for the structure of hydraulic jumps and separation in laminar free-surface flows. Phys. Rev. Lett. 79, 10381041.
Brechet, Y. & Neda, Z. 1999 On the circular hydraulic jump. Am. J. Phys. 67, 723731.
Bush, J. W. M. & Aristoff, J. M. 2003 The influence of surface tension on the circular hydraulic jump. J. Fluid Mech. 489, 229238.
Bush, J. W. M., Aristoff, J. M. & Hosoi, A. E. 2006 An experimental investigation of the stability of the circular hydraulic jump. J. Fluid Mech. 558, 3352.
Craik, A., Latham, R., Fawkes, M. & Gibbon, P. 1981 The circular hydraulic jump. J. Fluid Mech. 112, 347362.
Diversified Enterprises 2009 Surface Energy Data for PDMS (Polydimethylsiloxane) http://www.accudynetest.com/polymer_surface_data/polydimethylsiloxane.pdf.
Dressaire, E., Courbin, L., Crest, J. & Stone, H. A. 2010 Inertia dominated thin-film flows over microdecorated surfaces. Phys. Fluids 22, 073602.
Duchesne, A., Lebon, L. & Limat, L. 2014 Constant Froude number in a circular hydraulic jump and its implication on the jump radius selection. Europhys. Lett. 107, 54002.
Ellegaard, C., Hansen, A., Haaning, A., Hansen, K. & Bohr, T. 1996 Experimental results on flow separation and transitions in the circular hydraulic jump. Phys. Scr. T67, 105110.
Ellegaard, C., Hansen, A. E., Haaning, A., Marcussen, A., Bohr, T., Hansen, J. L. & Watanabe, S. 1998 Creating corners in kitchen sink flows. Nature 392, 767768.
Ellegaard, C, Hansen, A. E., Haaning, A., Hansen, K., Marcussen, A., Bohr, T., Hansen, J. L. & Watanabe, S. 1999 Polygonal hydraulic jumps. Nonlinearity 12, 17.
Hansen, S. H., Horluck, S., Zauner, D., Dimon, P., Ellegaard, C. & Creagh, S. C. 1997 Geometric orbits of surface waves from a circular hydraulic jump. Phys. Rev. E 55, 70487061.
Higuera, F. J. 1994 The hydraulic jump in a viscous laminar flow. J. Fluid Mech. 274, 6992.
Kasimov, A. R. 2008 A stationary circular hydraulic jump, the limits of its existence and its gasdynamic analogue. J. Fluid Mech. 601, 189198.
Kate, R. P., Das, P. K. & Chakraborty, S. 2007 Hydraulic jumps due to oblique impingement of circular liquid jets on a flat horizontal surface. J. Fluid Mech. 573, 247263.
Khayat, R. E. 2016 Impinging planar jet flow and hydraulic jump on a horizontal surface with slip. J. Fluid Mech. 808, 258289.
Khayat, R. E. & Kim, K. 2006 Thin-film flow of a viscoelastic fluid on an axisymmetric substrate of arbitrary shape. J. Fluid Mech. 552, 3771.
Lienhard, J. 2006 Heat transfer by impingement of circular free-surface liquid jets. In 18th National & 7th ISHMT-ASME Heat and Mass Transfer Conference, pp. 117. IIT.
Liu, X. & Lienhard, J. 1993 The hydraulic jump in circular jet impingement and in other thin liquid films. Exp. Fluids 15, 108116.
Liu, X., Gabour, L. A. & Lienhard, J. 1993 Stagnation-point heat transfer during impingement of laminar liquid jets: analysis including surface tension. Trans. ASME J. Heat Transfer 115, 99105.
Lubarda, V. & Talke, K. A. 2011 Analysis of the equilibrium droplet shape based on an ellipsoidal droplet Model. Langmuir 27, 1070510713.
Mohajer, B. & Li, R. 2015 Circular hydraulic jump on finite surfaces with capillary limit. Phys. Fluids 27, 117102.
Ozar, B., Cetegen, B. M. & Faghri, A. 2003 Experiments on the flow of a thin liquid film over a horizontal stationary and rotating disk surface. Exp. Fluids 34, 556565.
Passandideh-Fard, M., Teymourtash, A. R. & Khavari, M. 2011 Numerical study of circular hydraulic jump using volume-of-fluid method. Trans. ASME J. Fluids Engng 133 (1), 011401.
Prince, J. F., Maynes, D. & Crockett, J. 2012 Analysis of laminar jet impingement and hydraulic jump on a horizontal surface with slip. Phys. Fluids 24, 102103.
Rao, A. & Arakeri, J. H. 1998 Integral analysis applied to radial film flows. Intl J. Heat Mass Transfer 41, 2752767.
Rayleigh, Lord 1914 On the theory of long waves and bores. Proc. R. Soc. Lond. A 90 (619), 324328.
Rojas, N., Argentina, M. & Tirapegui, E. 2010 Inertial lubrication theory. Phys. Rev. Lett. 104, 187801-4.
Rojas, N., Argentina, M. & Tirapegui, E. 2013 A progressive correction to the circular hydraulic jump scaling. Phys. Fluids 25, 042105.
Rojas, N. & Tirapegui, E. 2015 Harmonic solutions for polygonal hydraulic jumps in thin fluid films. J. Fluid Mech. 780, 99119.
Stevens, J. & Webb, B. W. 1992 Measurements of the free surface flow structure under an impinging, free liquid jet. Trans. ASME J. Heat Transfer 114, 7984.
Schlichtling, H. 2000 Boundary-layer Theory, 8th edn. Springer.
Tani, I. 1949 Water Jump in the Boundary Layer. J. Phys. Soc. Japan 4, 212215.
Vicente, C. M. S., Andre, P. S. & Ferreira, R. A. S. 2012 Simple measurement of surface free energy using a web cam. Rev. Brasil. Ens. Fisica 34, 3312,1–5.
Wang, Y. & Khayat, R. E. 2018 Impinging jet flow and hydraulic jump on a rotating disk. J. Fluid Mech. 839, 525560.
Watanabe, S., Putkaradze, V. & Bohr, T. 2003 Integral methods for shallow free-surface flows with separation. J. Fluid Mech. 480, 233265.
Watson, E. 1964 The spread of a liquid jet over a horizontal plane. J. Fluid Mech. 20, 481499.
White, F. 2006 Fundamentals of Fluid Mechanics. McGraw-Hill.
Yang, S. & Chen, C. 1992 Laminar film condensation on a finite-size horizontal plate with suction at the wall. Appl. Math. Model. 16, 325329.
Yang, Y., Chen, C. & Hsu, P. 1997 Laminar film condensation on a finite-size wavy disk. Appl. Math. Model. 21, 139144.
Zhao, J. & Khayat, R. E. 2008 Spread of a non-Newtonian liquid jet over a horizontal plate. J. Fluid Mech. 613, 411443.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed