Skip to main content Accessibility help

Robust identification of dynamically distinct regions in stratified turbulence

  • G. D. Portwood (a1), S. M. de Bruyn Kops (a1), J. R. Taylor (a2), H. Salehipour (a3) and C. P. Caulfield (a2) (a4)...


We present a new robust method for identifying three dynamically distinct regions in a stratified turbulent flow, which we characterise as quiescent flow, intermittent layers and turbulent patches. The method uses the cumulative filtered distribution function of the local density gradient to identify each region. We apply it to data from direct numerical simulations of homogeneous stratified turbulence, with unity Prandtl number, resolved on up to $8192\times 8192\times 4096$ grid points. In addition to classifying regions consistently with contour plots of potential enstrophy, our method identifies quiescent regions as regions where $\unicode[STIX]{x1D716}/\unicode[STIX]{x1D708}N^{2}\sim O(1)$ , layers as regions where $\unicode[STIX]{x1D716}/\unicode[STIX]{x1D708}N^{2}\sim O(10)$ and patches as regions where $\unicode[STIX]{x1D716}/\unicode[STIX]{x1D708}N^{2}\sim O(100)$ . Here, $\unicode[STIX]{x1D716}$ is the dissipation rate of turbulence kinetic energy, $\unicode[STIX]{x1D708}$ is the kinematic viscosity and $N$ is the (overall) buoyancy frequency. By far the highest local dissipation and mixing rates, and the majority of dissipation and mixing, occur in patch regions, even when patch regions occupy only 5 % of the flow volume. We conjecture that treating stratified turbulence as an instantaneous assemblage of these different regions in varying proportions may explain some of the apparently highly scattered flow dynamics and statistics previously reported in the literature.


Corresponding author

Email address for correspondence:


Hide All
Almalkie, S. & de Bruyn Kops, S. M. 2012a Energy dissipation rate surrogates in incompressible Navier–Stokes turbulence. J. Fluid Mech. 697, 204236.
Almalkie, S. & de Bruyn Kops, S. M. 2012b Kinetic energy dynamics in forced, homogeneous, and axisymmetric stably stratified turbulence. J. Turbul. 13 (29), 129.
Antonia, R. A. 1981 Conditional sampling in turbulence measurement. Annu. Rev. Fluid Mech. 13 (1), 131156.
Bartello, P. & Tobias, S. M. 2013 Sensitivity of stratified turbulence to buoyancy Reynolds number. J. Fluid Mech. 725, 122.
Billant, P. & Chomaz, J.-M. 2001 Self-similarity of strongly stratified inviscid flows. Phys. Fluids 13, 16451651.
Brethouwer, G., Billant, P., Lindborg, E. & Chomaz, J.-M. 2007 Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech. 585, 343368.
de Bruyn Kops, S. M. 2015 Classical turbulence scaling and intermittency in stably stratified Boussinesq turbulence. J. Fluid Mech. 775, 436463.
Dimotakis, P. E. 2005 Turbulent mixing. Annu. Rev. Fluid Mech. 37, 329356.
Falder, M., White, N. J. & Caulfield, C. P. 2016 Seismic imaging of rapid onset of stratified turbulence in the south Atlantic Ocean. J. Phys. Oceanogr. 46 (4), 10231044.
Gargett, A., Osborn, T. & Nasmyth, P. 1984 Local isotropy and the decay of turbulence in a stratified fluid. J. Fluid Mech. 144, 231280.
Gibson, C. H. 1980 Fossil turbulence, salinity, and vorticity turbulence in the ocean. In Marine Turbulence (ed. Nihous, J. C.), pp. 221257. Elsevier.
Gibson, C. H. 1986 Internal waves, fossil turbulence, and composite ocean microstructure spectra. J. Fluid Mech. 168, 89117.
Hebert, D. A. & de Bruyn Kops, S. M. 2006a Predicting turbulence in flows with strong stable stratification. Phys. Fluids 18 (6), 110.
Hebert, D. A. & de Bruyn Kops, S. M. 2006b Relationship between vertical shear rate and kinetic energy dissipation rate in stably stratified flows. Geophys. Res. Lett. 33, L06602.
Hedley, T. B. & Keffer, J. F. 1974 Turbulent/non-turbulent decisions in an intermittent flow. J. Fluid Mech. 64 (04), 625644.
Itsweire, E. C., Koseff, J. R., Briggs, D. A. & Ferziger, J. H. 1993 Turbulence in stratified shear flows: implications for interpreting shear-induced mixing in the ocean. J. Phys. Oceanogr. 23, 15081522.
Jackson, P. R. & Rehmann, C. R. 2014 Experiments on differential scalar mixing in turbulence in a sheared, stratified flow. J. Phys. Oceanogr. 44 (10), 26612680.
Kimura, Y. & Herring, J. R. 2012 Energy spectra of stably stratified turbulence. J. Fluid Mech. 698, 1950.
Kuo, A. Y. & Corrsin, S. 1971 Experiments on internal intermittency and fine-structure distribution function in fully turbulent fluid. J. Fluid Mech. 50, 285320.
Lilly, D. K. 1983 Stratified turbulence and the mesoscale variability of the atmosphere. J. Atmos. Sci. 40, 749761.
Lin, J.-T. & Pao, Y.-H. 1979 Wakes in stratified fluids: a review. Annu. Rev. Fluid Mech. 11, 317338.
Lindborg, E. 2006 The energy cascade in a strongly stratified fluid. J. Fluid Mech. 550, 207242.
Maffioli, A., Brethouwer, G. & Lindborg, E. 2016 Mixing efficiency in stratified turbulence. J. Fluid Mech. 794, R3.
Maffioli, A. & Davidson, P. A. 2016 Dynamics of stratified turbulence decaying from a high buoyancy Reynolds. J. Fluid Mech. 786, 210233.
Nolan, K. P. & Zaki, T. A. 2013 Conditional sampling of transitional boundary layers in pressure gradients. J. Fluid Mech. 728, 306339.
Praud, O., Fincham, A. M. & Sommeria, J. 2005 Decaying grid turbulence in a strongly stratified fluid. J. Fluid Mech. 522, 133.
Rao, K. J. & de Bruyn Kops, S. M. 2011 A mathematical framework for forcing turbulence applied to horizontally homogeneous stratified flow. Phys. Fluids 23, 065110.
Riley, J. J. & de Bruyn Kops, S. M. 2003 Dynamics of turbulence strongly influenced by buoyancy. Phys. Fluids 15 (7), 20472059.
Riley, J. J. & Lindborg, E. 2008 Stratified turbulence: a possible interpretation of some geophysical turbulence measurements. J. Atmos. Sci. 65 (7), 24162424.
Rohr, J. J., Itsweire, E. C., Helland, K. N. & Atta, C. W. V. 1988 Growth and decay of turbulence in a stably stratified shear flow. J. Fluid Mech. 195, 77111.
Salehipour, H. & Peltier, W. 2015 Diapycnal diffusivity, turbulent Prandtl number and mixing efficiency in Boussinesq stratified turbulence. J. Fluid Mech. 775, 464500.
Salehipour, H., Peltier, W. R., Whalen, C. B. & Mackinnon, J. A. 2016 A new characterization of the turbulent diapycnal diffusivities of mass and momentum in the ocean. Geophys. Res. Lett. 43 (7), 33703379.
Shih, L. H., Koseff, J. R., Ivey, G. N. & Ferziger, J. H. 2005 Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations. J. Fluid Mech. 525, 193214.
Sreenivasan, K. R. 1998 An update on the energy dissipation rate in isotropic turbulence. Phys. Fluids 10 (2), 528529.
Watanabe, T., Riley, J. J., de Bruyn Kops, S. M., Diamessis, P. J. & Zhou, Q. 2016 Turbulent/non-turbulent interfaces in wakes in stably stratified fluids. J. Fluid Mech. 797, R1.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Robust identification of dynamically distinct regions in stratified turbulence

  • G. D. Portwood (a1), S. M. de Bruyn Kops (a1), J. R. Taylor (a2), H. Salehipour (a3) and C. P. Caulfield (a2) (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.