Skip to main content Accessibility help
×
Home

Reynolds-averaged Navier–Stokes equations with explicit data-driven Reynolds stress closure can be ill-conditioned

  • Jinlong Wu (a1), Heng Xiao (a1), Rui Sun (a1) and Qiqi Wang (a2)

Abstract

Reynolds-averaged Navier–Stokes (RANS) simulations with turbulence closure models continue to play important roles in industrial flow simulations. However, the commonly used linear eddy-viscosity models are intrinsically unable to handle flows with non-equilibrium turbulence (e.g. flows with massive separation). Reynolds stress models, on the other hand, are plagued by their lack of robustness. Recent studies in plane channel flows found that even substituting Reynolds stresses with errors below 0.5 % from direct numerical simulation databases into RANS equations leads to velocities with large errors (up to 35 %). While such an observation may have only marginal relevance to traditional Reynolds stress models, it is disturbing for the recently emerging data-driven models that treat the Reynolds stress as an explicit source term in the RANS equations, as it suggests that the RANS equations with such models can be ill-conditioned. So far, a rigorous analysis of the condition of such models is still lacking. As such, in this work we propose a metric based on local condition number function for a priori evaluation of the conditioning of the RANS equations. We further show that the ill-conditioning cannot be explained by the global matrix condition number of the discretized RANS equations. Comprehensive numerical tests are performed on turbulent channel flows at various Reynolds numbers and additionally on two complex flows, i.e. flow over periodic hills, and flow in a square duct. Results suggest that the proposed metric can adequately explain observations in previous studies, i.e. deteriorated model conditioning with increasing Reynolds number and better conditioning of the implicit treatment of the Reynolds stress compared to the explicit treatment. This metric can play critical roles in the future development of data-driven turbulence models by enforcing the conditioning as a requirement on these models.

Copyright

Corresponding author

Email address for correspondence: hengxiao@vt.edu

References

Hide All
Basara, B. & Jakirlic, S. 2003 A new hybrid turbulence modelling strategy for industrial CFD. Intl J. Numer. Meth. Fluids 42 (1), 89116.10.1002/fld.492
Bernardini, M., Pirozzoli, S. & Orlandi, P. 2014 Velocity statistics in turbulent channel flow up to Re = 4000. J. Fluid Mech. 742, 171191.
Breuer, M., Peller, N., Rapp, C. & Manhart, M. 2009 Flow over periodic hills: numerical and experimental study in a wide range of Reynolds numbers. Comput. Fluids 38 (2), 433457.
Chandrasekaran, S. & Ipsen, I. C. F. 1995 On the sensitivity of solution components in linear systems of equations. SIAM J. Matrix Anal. Applics. 16 (1), 93112.
Debnath, L. & Mikusiński, P. 2005 Hilbert Spaces with Applications. Academic Press.
Del Alamo, J. C. & Jiménez, J. 2003 Spectra of the very large anisotropic scales in turbulent channels. Phys. Fluids 15 (6), L41L44.
Gamahara, M. & Hattori, Y. 2017 Searching for turbulence models by artificial neural network. Phys. Rev. Fluids 2 (5), 054604.
Geneva, N. & Zabaras, N. 2019 Quantifying model form uncertainty in Reynolds-averaged turbulence models with Bayesian deep neural networks. J. Comput. Phys. 383, 125147.
Hamlington, P. E. & Dahm, W. J. A. 2008 Reynolds stress closure for nonequilibrium effects in turbulent flows. Phys. Fluids 20 (11), 115101.10.1063/1.3006023
Hamlington, P. E. & Ihme, M. 2014 Modeling of non-equilibrium homogeneous turbulence in rapidly compressed flows. Flow Turbul. Combust. 93 (1), 93124.
King, R. N., Hamlington, P. E. & Dahm, W. J. A. 2016 Autonomic closure for turbulence simulations. Phys. Rev. E 93 (3), 031301.
Laizet, S. & Lamballais, E. 2009 High-order compact schemes for incompressible flows: a simple and efficient method with quasi-spectral accuracy. J. Comput. Phys. 228 (16), 59896015.
Laizet, S. & Li, N. 2011 Incompact3d: a powerful tool to tackle turbulence problems with up to O (105) computational cores. Intl J. Numer. Meth. Fluids 67 (11), 17351757.
Lanczos, C. 1996 Linear Differential Operators. SIAM.
Launder, B. E. & Sharma, B. I. 1974 Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Transfer 1 (2), 131137.
Lee, M. & Moser, R. D. 2015 Direct numerical simulation of turbulent channel flow up to Re = 5200. J. Fluid Mech. 774, 395415.
Ling, J., Kurzawski, A. & Templeton, J. 2016 Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J. Fluid Mech. 807, 155166.
Maduta, R. & Jakirlic, S. 2017 Improved RANS computations of flow over the 25° -slant-angle Ahmed body. SAE Intl J. Passenger Cars – Mech. Syst. 10 (2), 649661.
Maulik, R. & San, O. 2017 A neural network approach for the blind deconvolution of turbulent flows. J. Fluid Mech. 831, 151181.
Maulik, R., San, O., Rasheed, A. & Vedula, P. 2019 Sub-grid modelling for two-dimensional turbulence using neural networks. J. Fluid Mech. 858, 122144.
Menter, F. R. 1994 Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32 (8), 15981605.
Parish, E. J. & Duraisamy, K. 2016 A paradigm for data-driven predictive modeling using field inversion and machine learning. J. Comput. Phys. 305, 758774.
Pinelli, A., Uhlmann, M., Sekimoto, A. & Kawahara, G. 2010 Reynolds number dependence of mean flow structure in square duct turbulence. J. Fluid Mech. 644, 107122.
Pope, S. B. 1975 A more general effective-viscosity hypothesis. J. Fluid Mech. 72 (2), 331340.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Poroseva, S. V., Colmenares, F., Juan, D. & Murman, S. M. 2016 On the accuracy of RANS simulations with DNS data. Phys. Fluids 28 (11), 115102.
Singh, A. P. & Duraisamy, K. 2016 Using field inversion to quantify functional errors in turbulence closures. Phys. Fluids 28, 045110.
Singh, A. P., Medida, S. & Duraisamy, K. 2017 Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils. AIAA J. 55 (7), 22152227.
Slotnick, J., Khodadoust, A., Alonso, J., Darmofal, D., Gropp, W., Lurie, E. & Mavriplis, D.2014 CFD Vision 2030 Study: a path to revolutionary computational aerosciences. Tech. Rep. National Aeronautics and Space Administration, Langley Research Center, Hampton, VA.
Spalart, P. R. & Allmaras, S. R. 1994 A one-equation turbulence model for aerodynamic flows. Rech. Aerosp, 1, 521.
Speziale, C. G. & Xu, X.-H. 1996 Towards the development of second-order closure models for nonequilibrium turbulent flows. Intl J. Heat Fluid Flow 17 (3), 238244.
Steele, J. M. 2004 The Cauchy–Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities. Cambridge University Press.
Strang, G. 2016 Introduction to Linear Algebra, 5th edn. Wellesley–Cambridge Press.
Thompson, R. L., Sampaio, L. E. B., de Bragança Alves, F. A. V., Thais, L. & Mompean, G. 2016 A methodology to evaluate statistical errors in DNS data of plane channel flows. Comput. Fluids 130, 17.
Vollant, A., Balarac, G. & Corre, C. 2017 Subgrid-scale scalar flux modelling based on optimal estimation theory and machine-learning procedures. J. Turbul. 18 (9), 854878.
Wang, J.-X., Wu, J.-L. & Xiao, H. 2017 Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data. Phys. Rev. Fluids 2 (3), 034603.
Weatheritt, J. & Sandberg, R. 2016 A novel evolutionary algorithm applied to algebraic modifications of the RANS stress–strain relationship. J. Comput. Phys. 325, 2237.
Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12 (6), 620631.
Wilcox, D. C. 1988 Reassessment of the scale-determining equation for advanced turbulence models. AIAA J. 26 (11), 12991310.
Wu, J.-L., Xiao, H. & Paterson, E. 2018 Physics-informed machine learning approach for augmenting turbulence models: a comprehensive framework. Phys. Rev. Fluids 3 (7), 074602.
Zhu, L., Zhang, W., Kou, J. & Liu, Y. 2019 Machine learning methods for turbulence modeling in subsonic flows around airfoils. Phys. Fluids 31 (1), 015105.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed