Skip to main content Accessibility help
×
Home

Resolved energy budget of superstructures in Rayleigh–Bénard convection

  • Gerrit Green (a1) (a2), Dimitar G. Vlaykov (a1) (a3), Juan Pedro Mellado (a4) and Michael Wilczek (a1) (a2)

Abstract

Turbulent superstructures, i.e. large-scale flow structures in turbulent flows, play a crucial role in many geo- and astrophysical settings. In turbulent Rayleigh–Bénard convection, for example, horizontally extended coherent large-scale convection rolls emerge. Currently, a detailed understanding of the interplay of small-scale turbulent fluctuations and large-scale coherent structures is missing. Here, we investigate the resolved kinetic energy and temperature variance budgets by applying a filtering approach to direct numerical simulations of Rayleigh–Bénard convection at high aspect ratio. In particular, we focus on the energy transfer rate between large-scale flow structures and small-scale fluctuations. We show that the small scales primarily act as a dissipation for the superstructures. However, we find that the height-dependent energy transfer rate has a complex structure with distinct bulk and boundary layer features. Additionally, we observe that the heat transfer between scales mainly occurs close to the thermal boundary layer. Our results clarify the interplay of superstructures and turbulent fluctuations and may help to guide the development of an effective description of large-scale flow features in terms of reduced-order models.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Resolved energy budget of superstructures in Rayleigh–Bénard convection
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Resolved energy budget of superstructures in Rayleigh–Bénard convection
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Resolved energy budget of superstructures in Rayleigh–Bénard convection
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence: michael.wilczek@ds.mpg.de
Present address: Department of Physics, Aerospace Engineering Division, Universitat Politècnica de Catalunya, C. Jordi Girona 1-3, 08034, Barcelona, Spain

References

Hide All
Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.
Aluie, H. & Eyink, G. L. 2009 Localness of energy cascade in hydrodynamic turbulence. II. Sharp spectral filter. Phys. Fluids 21 (11), 115108.
Atkinson, B. W. & Zhang, J. W. 1996 Mesoscale shallow convection in the atmosphere. Rev. Geophys. 34 (4), 403431.
Ballouz, J. G. & Ouellette, N. T. 2018 Tensor geometry in the turbulent cascade. J. Fluid Mech. 835, 10481064.
Bauer, C., von Kameke, A. & Wagner, C. 2019 Kinetic energy budget of the largest scales in turbulent pipe flow. Phys. Rev. Fluids 4 (6), 064607.
Bodenschatz, E., Pesch, W. & Ahlers, G. 2000 Recent developments in Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 32 (1), 709778.
Buzzicotti, M., Linkmann, M., Aluie, H., Biferale, L., Brasseur, J. & Meneveau, C. 2018 Effect of filter type on the statistics of energy transfer between resolved and subfilter scales from a-priori analysis of direct numerical simulations of isotropic turbulence. J. Turbul. 19 (2), 167197.
Chillà, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35 (7), 58.
Ching, E. S. C. 2014 Statistics and Scaling in Turbulent Rayleigh–Bénard Convection, 1st edn. Springer.
Cimarelli, A. & De Angelis, E. 2011 Analysis of the Kolmogorov equation for filtered wall-turbulent flows. J. Fluid Mech. 676, 376395.
Cimarelli, A. & De Angelis, E. 2012 Anisotropic dynamics and sub-grid energy transfer in wall-turbulence. Phys. Fluids 24 (1), 015102.
Cimarelli, A., De Angelis, E., Schlatter, P., Brethouwer, G., Talamelli, A. & Casciola, C. M. 2015 Sources and fluxes of scale energy in the overlap layer of wall turbulence. J. Fluid Mech. 771, 407423.
Domaradzki, J. A., Liu, W., Härtel, C. & Kleiser, L. 1994 Energy transfer in numerically simulated wall-bounded turbulent flows. Phys. Fluids 6 (4), 15831599.
Elperin, T., Golubev, I., Kleeorin, N. & Rogachevskii, I. 2006a Large-scale instabilities in a nonrotating turbulent convection. Phys. Fluids 18 (12), 126601.
Elperin, T., Kleeorin, N., Rogachevskii, I. & Zilitinkevich, S. 2002 Formation of large-scale semiorganized structures in turbulent convection. Phys. Rev. E 66 (6), 066305.
Elperin, T., Kleeorin, N., Rogachevskii, I. & Zilitinkevich, S. S. 2006b Tangling turbulence and semi-organized structures in convective boundary layers. Boundary-Layer Meteorol. 119 (3), 449472.
Emran, M. S. & Schumacher, J. 2015 Large-scale mean patterns in turbulent convection. J. Fluid Mech. 776, 96108.
Eyink, G. L. 1995 Local energy flux and the refined similarity hypothesis. J. Stat. Phys. 78 (1), 335351.
Eyink, G. L.2007 Turbulence Theory, course notes, The Johns Hopkins University, 2007–2008. Available at: http://www.ams.jhu.edu/∼eyink/Turbulence/notes.html.
Eyink, G. L. & Aluie, H. 2009 Localness of energy cascade in hydrodynamic turbulence. I. Smooth coarse graining. Phys. Fluids 21 (11), 115107.
Faranda, D., Lembo, V., Iyer, M., Kuzzay, D., Chibbaro, S., Daviaud, F. & Dubrulle, B. 2018 Computation and characterization of local subfilter-scale energy transfers in atmospheric flows. J. Atmos. Sci. 75 (7), 21752186.
Fodor, K., Mellado, J. P. & Wilczek, M. 2019 On the role of large-scale updrafts and downdrafts in deviations from Monin-Obukhov similarity theory in free convection. Boundary-Layer Meteorol. 172 (3), 371396.
Fonda, E., Pandey, A., Schumacher, J. & Sreenivasan, K. R. 2019 Deep learning in turbulent convection networks. Proc. Natl Acad. Sci. 116 (18), 86678672.
Germano, M. 1992 Turbulence: the filtering approach. J. Fluid Mech. 238, 325336.
Getling, A. V. 1998 Rayleigh–Bénard Convection, Advanced Series in Nonlinear Dynamics, vol. 11. World Scientific.
Grossmann, S. & Lohse, D. 2004 Fluctuations in turbulent Rayleigh–Bénard convection: The role of plumes. Phys. Fluids 16 (12), 44624472.
von Hardenberg, J., Parodi, A., Passoni, G., Provenzale, A. & Spiegel, E. A. 2008 Large-scale patterns in Rayleigh–Bénard convection. Phys. Lett. A 372 (13), 22232229.
Hartlep, T., Tilgner, A. & Busse, F. H. 2003 Large scale structures in Rayleigh–Bénard convection at high Rayleigh numbers. Phys. Rev. Lett. 91 (6), 064501.
Hartlep, T., Tilgner, A. & Busse, F. H. 2005 Transition to turbulent convection in a fluid layer heated from below at moderate aspect ratio. J. Fluid Mech. 544, 309322.
Ibbeken, G., Green, G. & Wilczek, M. 2019 Large-scale pattern formation in the presence of small-scale random advection. Phys. Rev. Lett. 123, 114501.
Kaimal, J. C., Wyngaard, J. C., Haugen, D. A., Coté, O. R., Izumi, Y., Caughey, S. J. & Readings, C. J. 1976 Turbulence structure in the convective boundary layer. J. Atmos. Sci. 33 (11), 21522169.
Kimmel, S. J. & Domaradzki, J. A. 2000 Large eddy simulations of Rayleigh–Bénard convection using subgrid scale estimation model. Phys. Fluids 12 (1), 169184.
Krug, D., Lohse, D. & Stevens, R. J. A. M.2019 Coherence of temperature and velocity superstructures in turbulent Rayleigh–Bénard flow. J. Fluid Mech. (in press) arXiv:1908.10073.
Lohse, D. & Xia, K.-Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42 (1), 335364.
Lomax, H., Pulliam, T. H. & Zingg, D. W. 2001 Fundamentals of computational fluid dynamics. In Scientific Computation, 1st edn. Springer.
Lülff, J., Wilczek, M. & Friedrich, R. 2011 Temperature statistics in turbulent Rayleigh–Bénard convection. New J. Phys. 13 (1), 015002.
Lülff, J., Wilczek, M., Stevens, R. J. A. M., Friedrich, R. & Lohse, D. 2015 Turbulent Rayleigh–Bénard convection described by projected dynamics in phase space. J. Fluid Mech. 781, 276297.
Manneville, P. 1990 Dissipative Structures and Weak Turbulence. Elsevier.
Marati, N., Casciola, C. M. & Piva, R. 2004 Energy cascade and spatial fluxes in wall turbulence. J. Fluid Mech. 521, 191215.
Mellado, J. P. 2012 Direct numerical simulation of free convection over a heated plate. J. Fluid Mech. 712, 418450.
Mellado, J. P. & Ansorge, C. 2012 Factorization of the Fourier transform of the pressure-Poisson equation using finite differences in colocated grids. Z. Angew. Math. Mech. 92 (5), 380392.
Mellado, J. P., van Heerwaarden, C. C. & Garcia, J. R. 2016 Near-surface effects of free atmosphere stratification in free convection. Boundary-Layer Meteorol. 159 (1), 6995.
Morris, S. W., Bodenschatz, E., Cannell, D. S. & Ahlers, G. 1993 Spiral defect chaos in large aspect ratio Rayleigh–Bénard convection. Phys. Rev. Lett. 71 (13), 20262029.
Nordlund, Å., Stein, R. F. & Asplund, M. 2009 Solar surface convection. Living Rev. Sol. Phys. 6 (1), 2.
Pandey, A., Scheel, J. D. & Schumacher, J. 2018 Turbulent superstructures in Rayleigh–Bénard convection. Nat. Commun. 9 (1), 2118.
Parodi, A., von Hardenberg, J., Passoni, G., Provenzale, A. & Spiegel, E. A. 2004 Clustering of plumes in turbulent convection. Phys. Rev. Lett. 92, 194503.
Petschel, K., Stellmach, S., Wilczek, M., Lülff, J. & Hansen, U. 2013 Dissipation layers in Rayleigh–Bénard convection: A unifying view. Phys. Rev. Lett. 110 (11), 114502.
Petschel, K., Stellmach, S., Wilczek, M., Lülff, J. & Hansen, U. 2015 Kinetic energy transport in Rayleigh–Bénard convection. J. Fluid Mech. 773, 395417.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Sagaut, P. 2006 Large Eddy Simulation for Incompressible Flows, 3rd edn. Springer.
Scheel, J. D. & Schumacher, J. 2014 Local boundary layer scales in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 758, 344373.
Schumacher, J., Pandey, A., Yakhot, V. & Sreenivasan, K. R. 2018 Transition to turbulence scaling in Rayleigh–Bénard convection. Phys. Rev. E 98 (3), 033120.
Shishkina, O., Stevens, R. J. A. M., Grossmann, S. & Lohse, D. 2010 Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution. New J. Phys. 12 (7), 075022.
Shishkina, O. & Wagner, C. 2006 Analysis of thermal dissipation rates in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 546, 5160.
Shraiman, B. I. & Siggia, E. D. 1990 Heat transport in high-Rayleigh-number convection. Phys. Rev. A 42 (6), 36503653.
Siggia, E. D. 1994 High Rayleigh number convection. Annu. Rev. Fluid Mech. 26 (1), 137168.
Stevens, R. J. A. M., Blass, A., Zhu, X., Verzicco, R. & Lohse, D. 2018 Turbulent thermal superstructures in Rayleigh–Bénard convection. Phys. Rev. Fluids 3 (4), 041501.
Togni, R., Cimarelli, A. & De Angelis, E. 2015 Physical and scale-by-scale analysis of Rayleigh–Bénard convection. J. Fluid Mech. 782, 380404.
Togni, R., Cimarelli, A. & De Angelis, E. 2017 Towards an improved subgrid-scale model for thermally driven flows. In Progress in Turbulence VII (ed. Örlü, R., Talamelli, A., Oberlack, M. & Peinke, J.), pp. 141145. Springer International.
Togni, R., Cimarelli, A. & De Angelis, E. 2019 Resolved and subgrid dynamics of Rayleigh–Bénard convection. J. Fluid Mech. 867, 906933.
Valori, V., Innocenti, A., Dubrulle, B. & Chibbaro, S. 2020 Weak formulation and scaling properties of energy fluxes in three-dimensional numerical turbulent Rayleigh–Bénard convection. J. Fluid Mech. 885, A14.
Verma, M. K. 2018 Physics of Buoyant Flows. World Scientific.
Verma, M. K., Kumar, A. & Pandey, A. 2017 Phenomenology of buoyancy-driven turbulence: recent results. New J. Phys. 19 (2), 025012.
Verzicco, R. & Camussi, R. 2003 Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell. J. Fluid Mech. 477, 1949.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

Resolved energy budget of superstructures in Rayleigh–Bénard convection

  • Gerrit Green (a1) (a2), Dimitar G. Vlaykov (a1) (a3), Juan Pedro Mellado (a4) and Michael Wilczek (a1) (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.