Baskurt, O., Neu, B. & Meiselman, J. H.
2012
Red Blood Cell Aggregation. CRC Press.

Biben, T., Farutin, A. & Misbah, C.
2011
Three-dimensional vesicles under shear flow: numerical study of dynamics and phase diagram. Phys. Rev. E
83, 031921.

Blake, J. R.
1971
A note on the image system for a stokeslet in a no-slip boundary. Math. Proc. Camb.
70, 303–310.

Boedec, G., Jaeger, M. & Leonetti, M.
2012
Settling of a vesicle in the limit of quasispherical shapes. J. Fluid Mech.
690, 227–261.

Boedec, G., Jaeger, M. & Leonetti, M.
2013
Sedimentation-induced tether on a settling vesicle. Phys. Rev. E
88, 010702.

Boedec, G., Leonetti, M. & Jaeger, M.
2011
3d vesicle dynamics simulations with a linearly triangulated surface. J. Comput. Phys.
230 (4), 1020–1034.

Boltz, H.-H. & Kierfeld, J.
2015
Shapes of sedimenting soft elastic capsules in a viscous fluid. Phys. Rev. E
92, 033003.

Brochard, F. & Lennon, J. F.
1975
Frequency spectrum of the flicker phenomenon in erythroctes. J. Phys. (Paris)
36 (11), 1035–1047.

Brust, M., Schaefer, C., Doerr, R., Pan, L., Garcia, M., Arratia, P. E. & Wagner, C.
2013
Rheology of human blood plasma: viscoelastic versus newtonian behavior. Phys. Rev. Lett.
110, 078305.

Canham, P. B., Jay, A. W. L. & Tilsworth, E.
1971
The rate of sedimentation of individual human red blood cells. J. Cell. Physiol.
78 (3), 319–331.

Dimitrakopoulos, P.
2012
Analysis of the variation in the determination of the shear modulus of the erythrocyte membrane: effects of the constitutive law and membrane modeling. Phys. Rev. E
85, 041917.

Dupire, J., Socol, M. & Viallat, A.
2012
Full dynamics of a red blood cell in shear flow. Proc. Natl Acad. Sci. USA
109 (51), 20808–20813.

Evans, E. & Fung, Y. C.
1972
Improved measurements of the erythrocyte geometry. Microvasc. Res.
4 (4), 335–347.

Foessel, É., Walter, J., Salsac, A.-V. & Barthès-Biesel,
2011
Influence of internal viscosity on the large deformation and buckling of a spherical capsule in a simple shear flow. J. Fluid Mech.
672, 477–486.

Freund, J. B.
2007
Leukocyte margination in a model microvessel. Phys. Fluids
19 (2), 023301.

Gov, N. & Safran, S. A.
2005
Red blood cell shape and fluctuations: cytoskeleton confinement and atp activity. J. Biol. Phys.
31 (3–4), 453–464.

Groom, A. C. & Anderson, J. C.
1972
Measurement of the size distribution of human erythrocytes by a sedimentation method. J. Cell. Physiol.
79 (1), 127–137.

Guazzelli, E. & Hinch, J.
2011
Fluctuations and instability in sedimentation. Annu. Rev. Fluid Mech.
43 (1), 97–116.

Happel, J. & Brenner, H.
1963
Low Reynolds number hydrodynamics with special applications to particulate media. Martinus Nijhoff.

Helfrich, W.
1973
Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C
28, 693–703.

Hénon, S., Lenormand, G., Richert, A. & Gallet, F.
1999
A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys. J.
76 (2), 1145–1151.

Hoffman, J. F. & Inoué, S.
2006
Directly observed reversible shape changes and hemoglobin stratification during centrifugation of human and amphiuma red blood cells. Proc. Natl Acad. Sci. USA
103 (8), 2971–2976.

Huang, Z. H., Abkarian, M. & Viallat, A.
2011
Sedimentation of vesicles: from pear-like shapes to microtether extrusion. New J. Phys.
13 (3), 035026.

Hwang, W. C. & Waugh, R. E.
1997
Energy of dissociation of lipid bilayer from the membrane skeleton of red blood cells. Biophys. J.
72 (6), 2669–2678.

Jay, A. W. L. & Canham, P. B.
1972
Sedimentation of single human red blood cells. Differences between normal and glutaraldehyde fixed cells. J. Cell. Physiol.
80 (3), 367–372.

Kim, S. & Karrila, J. S.
1991
Microhydrodynamics – Principles and Selected Applications. Dover.

Koh, C. J. & Leal, L. G.
1989
The stability of drop shapes for translation at zero reynolds number through a quiescent fluid. Phys. Fluids A
1 (8), 1309–1313.

Li, L., Manikantan, H., Saintillan, D. & Spagnolie, S.
2013
The sedimentation of flexible filaments. J. Fluid Mech.
735, 705–736.

Lim, H. W. G., Wortis, M. & Mukhopadhyay, R.
2002
Stomatocyte–discocyte–echinocyte sequence of the human red blood cell: evidence for the bilayer – couple hypothesis from membrane mechanics. Proc. Natl Acad. Sci. USA
99 (26), 16766–16769.

Matsunaga, D., Imai, Y., Omori, T., Ishikawa, T. & Yamaguchi, T.
2014
A full GPU implementation of a numerical method for simulating capsule suspensions. J. Biomech. Sci. Engng
14, 00039.

Matsunaga, D., Imai, Y., Yamaguchi, T. & Ishikawa, T.
2015
Deformation of a spherical capsule under oscillating shear flow. J. Fluid Mech.
762, 288–301.

Matsunaga, D., Imai, Y., Yamaguchi, T. & Ishikawa, T.
2016
Rheology of a dense suspension of spherical capsules under simple shear flow. J. Fluid Mech.
786, 110–127.

Meyer, M., Desbrun, M., Schröder, P. & Barr, A.
2003
Discrete differential-geometry operators for triangulated 2-manifolds. In Mathematics and Visualization (ed. Hege, H.-C. & Polthier, K.), pp. 35–57. Springer.

Mogami, Y., Ishii, J. & Baba, A. S.
2001
Theoretical and experimental dissection of gravity-dependent mechanical orientation in gravitactic microorganisms. Biol. Bull.
201, 26–33.

Nix, S., Imai, Y., Matsunaga, D., Yamaguchi, T. & Ishikawa, T.
2014
Lateral migration of a spherical capsule near a plane wall in stokes flow. Phys. Rev. E
90, 043009.

Omori, T., Ishikawa, T., Imai, Y. & Yamaguchi, T.
2013
Shear-induced diffusion of red blood cells in a semi-dilute suspension. J. Fluid Mech.
724, 154–174.

Ou-Yang, Z. & Helfrich, W.
1989
Bending energy of vesicle membranes: general expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys. Rev. A
39, 5280–5288.

Peltomaki, M. & Gompper, G.
2013
Sedimentation of single red blood cells. Soft Matt.
9, 8346–8358.

Peng, Z., Mashayekh, A. & Zhu, Q.
2014
Erythrocyte responses in low-shear-rate flows: effects of non-biconcave stress-free state in the cytoskeleton. J. Fluid Mech.
742, 96–118.

Pozrikidis, C.
1990
The instability of a moving viscous drop. J. Fluid Mech.
210, 1–21.

Pozrikidis, C.
1992a
Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.

Pozrikidis, C.
1992b
The buoyancy-driven motion of a train of viscous drops within a cylindrical tube. J. Fluid Mech.
237, 627–648.

Pozrikidis, C.
1995
Finite deformation of liquid capsules enclosed by elastic membranes in simple shear flow. J. Fluid Mech.
297, 123–152.

Ramanujan, S. & Pozrikidis, C.
1998
Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities. J. Fluid Mech.
361, 117–143.

Saintillan, D., Shaqfeh, E. S. G. & Darve, E.
2006
The growth of concentration fluctuations in dilute dispersions of orientable and deformable particles under sedimentation. J. Fluid Mech.
553, 347–388.

Sinha, K. & Graham, M. D.
2015
Dynamics of a single red blood cell in simple shear flow. Phys. Rev. E
92, 042710.

Skalak, R., Tozeren, A., Zarda, R. P. & Chien, S.
1973
Strain energy function of red blood cell membranes. Biophys. J.
13 (3), 245–264.

Suárez, I. R., Leidy, C., Téllez, G., Gay, G. & Gonzalez-Mancera, A.
2013
Slow sedimentation and deformability of charged lipid vesicles. PLoS ONE
8 (7), e68309.

Sui, Y., Chew, Y. T., Roy, P. & Low, H. T.
2008
A hybrid method to study flow-induced deformation of three-dimensional capsules. J. Comput. Phys.
227 (12), 6351–6371.

The Japanese Society for Laboratory Hematology
2003
Blood Test Standard, 2nd edn. Ishiyaku (in Japanese).

Tsubota, K., Wada, S. & Liu, H.
2014
Elastic behavior of a red blood cell with the membrane’s nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion. Biomech. Model. Mechan.
13 (4), 735–746.

Turlier, H., Fedosov, D. A., Audoly, B., Auth, T., Gov, N. S., Sykes, C., Joanny, J. F., Gompper, G. & Betz, T.
2016
Equilibrium physics breakdown reveals the active nature of red blood cell flickering. Nat. Phys.
12 (5), 513–519.

Veerapaneni, S. K., Gueyffier, D., Zorin, D. & Biros, G.
2009
A boundary integral method for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2D. J. Comput. Phys.
228 (7), 2334–2353.

Walter, J., Salsac, A.-V., Barthès-Biesel, D. & Le Tallec, P.
2010
Coupling of finite element and boundary integral methods for a capsule in a Stokes flow. Int. J. Numer. Meth. Eng.
83 (7), 829–850.

Westergren, A.
1921
Studies of the suspension stability of the blood in pulmonary tuberculosis. Acta Med. Scand.
54 (1), 247–282.