Skip to main content Accessibility help
×
Home

Relaxation of a dewetting contact line. Part 2. Experiments

  • GILES DELON (a1), MARC FERMIGIER (a1), JACCO H. SNOEIJER (a1) (a2) and BRUNO ANDREOTTI (a1)

Abstract

The dynamics of receding contact lines is investigated experimentally through controlled perturbations of a meniscus in a dip-coating experiment. We first describe stationary menisci and their breakdown at the coating transition. Above this transition where liquid is deposited, it is found that the dynamics of the interface can be interpreted as a quasi-steady succession of stationary states. This provides the first experimental access to the entire bifurcation diagram of dynamical wetting, confirming the hydrodynamic theory developed in Part 1. In contrast to quasi-static theories based on a dynamic contact angle, we demonstrate that the transition strongly depends on the large-scale flow geometry. We then establish the dispersion relation for large wavenumbers, for which we find a decay rate σ proportional to wavenumber |q|. The speed dependence of σ is described well by hydrodynamic theory, in particular the absence of diverging time scales at the critical point. Finally, we highlight some open problems related to contact angle hysteresis that lead beyond the current description.

Copyright

References

Hide All
Ajdari, A., Brochard-Wyart, F., De Gennes, P. G., Leibler, L., Viovy, J. L. & Rubinstein, M. 1994 Slippage of an entangled polymer melt on a grafted surface. Physica A 204, 1739.
Barrat, J.-L. & Bocquet, L. 1999 Large slip effect at a nonwetting fluid-solid interface. Phys. Rev. Lett. 82, 46714674.
Blake, T. D. & Haynes, J. M. 1969 Kinetics of liquid/liquid displacement. J. Colloid Interface Sci. 30, 421.
Blake, T. D., de Coninck, J. & D'Ortuna, U. 1995 Models of wetting: Immiscible lattice Boltzmann automata versus molecular kinetic theory. Langmuir 11, 4588.
Cottin-Bizonne, C., Cross, B., Steinberger, A. & Charlaix, E. 2005 Boundary slip on smooth hydrophobic surfaces: intrinsic effects and possible artifacts. Phys. Rev. Lett. 94, 056102.
Cox, R. G. 1986 The dynamics of the spreading of liquids on a solid surface. J. Fluid Mech. 168, 169194.
Dussan, V. E. B., & Davis, S. H. 1974 On the motion of a fluid-fluid interface along a solid surface. J. Fluid Mech. 65, 7195.
Dussan, V.E. B., Rame, E. & Garoff, S. 1991 On identifying the appropriate boundary conditions at a moving contact line: an experimental investigation J. Fluid Mech. 230, 97116.
Eggers, J. 2004 Hydrodynamic theory of forced dewetting. Phys. Rev. Lett. 93, 094502.
Eggers, J. 2005 Existence of receding and advancing contact lines. Phys. Fluids 17, 082106.
de Gennes, P.-G. 1986 a Dynamique d'une ligne triple. C. R. Acad. Sci. Paris 302, 731733.
de Gennes, P.-G. 1986 b Deposition of Langmuir-Blodget layers. Colloid Polymer Sci. 264, 463465.
Golestanian, R. & Raphael, E. 2001 a Dissipation in dynamics of a moving contact line. Phys. Rev. E 64 031601.
Golestanian, R. & Raphael, E. 2001 b Relaxation of a moving contact line and the Landau-Levich effect. Europhys. Lett. 55 228234.
Golestanian, R. & Raphael, E. 2003 Roughening transition in a moving contact line. Phys. Rev. E 67, 031603.
Hocking, L. M. 2001 Meniscus draw-up and draining. Eur. J. Appl. Maths 12, 195208.
Hoffman, R. L. 1975 Dynamic contact angle. J. Colloid Interface Sci. 50, 228241.
Huh, C. & Scriven, L. E. 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35, 85101.
Jacqmin, D. 2004 Onset of wetting failure in liquid-liquid systems. J. Fluid. Mech. 517, 209228.
Joanny, J.-F. & de Gennes, P.-G. 1984 Model for contact angle hysteresis. J. Chem. Phys. 11, 552562.
Landau, L. D. & Levich, B. V. 1942 Dragging of a liquid by a moving plate. Acta Physicochim. URSS 17, 4254.
Landau, L. D. & Lifschitz, E. M. 1959 Fluid Mechanics. Pergamon.
Le Grand, N., Daerr, A. & Limat, L. 2005 Shape and motion of drops sliding down an inclined plane. J. Fluid Mech. 541, 293315.
Lee, C. L., Polmanteer, K. E. & King, E. G. 1970 Flow behavior of narrow-distribution polydimethylsiloxane J. Polymer Sci. A2 8, 19091916.
Marsh, J. A. & Cazabat, A. M. 1993 Dynamics of contact line depinning from a single defect. Phys. Rev. Lett. 71, 24332436.
Nikolayev, V. S. & Beysens, D. A. 2003 Equation of motion of the triple contact line along an inhomogeneous interface. Europhys. Lett. 64, 763768.
Ondarçuhu, T. & Veyssié, M. 1991 Relaxation modes of the contact line of a liquid spreading on a surface. Nature 352, 418420.
Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931980.
Pismen, L. M. & Pomeau, Y. 2000 Disjoining potential and spreading of thin liquid layers in the diffuse-interface model coupled to hydrodynamics. Phys. Rev. E 62, 24802492.
Podgorski, T., Flesselles, J. M. & Limat, L. 2001 Corners, cusps and pearls in running drops 2001. Phys. Rev. Lett. 87, 036102.
Rahalker, R. R., Lamb, J., Harrison, G., Barlow, A. J., Hawthorn, W., Semlyen, J. A., North, A. M. & Pethrick, R. A. 1984 Viscoelastic studies of linear polydimethylsiloxanes Proc. R. Soc. Lond A 394, 207222.
Rio, E., Daerr, A., Andreotti, B. & Limat, L. 2005 Boundary conditions in the vicinity of a dynamic contact line: experimental investigation of viscous drops sliding down an inclined plane. Phys. Rev. Lett. 94, 024503.
Schmatko, T., Hervet, H. & Léger, L. Friction and slip at simple fluid-solid interfaces: the roles of the molecular shape and the solid-liquid interaction. Phys. Rev. Lett. 94, 244501.
Sedev, R. V. & Petrov, J. G. 1991 The critical condition for transition from steady wetting to film entrainment. Colloids Surf. 53, 147156.
Semal, S., Bauthier, C., Voué, M., Vanden Eynde, J. J., Gouttebaron, R. & de Coninck, J. 2000 Spontaneous spreading of liquid droplets on mixed alkanethiol monolayers: dynamics of wetting and wetting transition. J. Phys. Chem. B 104, 6225
Snoeijer, J. H. 2006 Free surface flows with large slopes: beyond lubrication theory. Phys. Fluids 18, 021701
Snoeijer, J. H., Andreotti, B., Delon, G. & Fermigier, M. 2007 Relaxation of a dewetting contact line. Part 1. A full-scale hydrodynamic calculation, J. Fluid Mech. 579, 6383.
Snoeijer, J. H., Delon, G., Fermigier, M. & Andreotti, B. 2006 Avoided critical behavior in dynamically forced wetting. Phys. Rev. Lett. 96, 174504.
Teletzke, G. F., Davis, H. T. & Scriven, L. E. 1988 Wetting hydrodynamics. Rev. Phys. Appl. (Paris) 23, 9891007.
Thompson, P. A. & Robbins, M. O. 1989 Simulations of contact-line motion: slip and the dynamic contact angle. Phys. Rev. Lett. 63, 766769.
Thompson, P. A. & Troian, S. M. 1997 A general boundary condition for liquid flow at solid surfaces Nature 389, 360362.
Voinov, O. V. 1976 Hydrodynamics of wetting. Fluid Dyn. 11, 714721.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed