Skip to main content Accessibility help
×
Home

Regimes of two-dimensionality of decaying shallow axisymmetric swirl flows with background rotation

  • M. Duran-Matute (a1), L. P. J. Kamp (a1), R. R. Trieling (a1) and G. J. F. van Heijst (a1)

Abstract

Both background rotation and small depths are said to enforce the two-dimensionality of flows. In the current paper, we describe a systematic study of the two-dimensionality of a shallow monopolar vortex subjected to background rotation. Using a perturbation analysis of the Navier–Stokes equations for small aspect ratio (with the fluid depth and a typical radial length scale of the vortex), we found nine different regimes in the parameter space where the flow is governed to lowest order by different sets of equations. From the properties of these sets of equations, it was determined that the flow can be considered as quasi-two-dimensional in only five of the nine regimes. The scaling of the velocity components as given by these sets of equations was compared with results from numerical simulations to find the actual boundaries of the different regimes in the parameter space (), where is the Ekman boundary layer thickness and is the equivalent boundary layer thickness for a monopolar vortex without background rotation. Even though background rotation and small depths do promote the two-dimensionality of flows independently, the combination of these two characteristics does not necessarily have that same effect.

Copyright

Corresponding author

Email address for correspondence: m.duran.matute@gmail.com

References

Hide All
1. Afanasyev, Y. & Wells, J. 2005 Quasi-two-dimensional turbulence on the polar beta-plane: laboratory experiments. Geophys. Astrophys. Fluid Dyn. 99, 117.
2. Akkermans, R. A. D., Cieslik, A. R., Kamp, L. P. J., Trieling, R. R., Clercx, H. J. H. & van Heijst, G. J. F. 2008a The three-dimensional structure of an electromagnetically generated dipolar vortex in a shallow fluid layer. Phys. Fluids 554, 116601.
3. Akkermans, R. A. D., Kamp, L. P. J., Clercx, H. J. H. & van Heijst, G. J. F. 2008b Intrinsic three-dimensionality in electromagnetically driven shallow flows. Europhys. Lett. 83, 24001.
4. Bödewadt, 1940 Die Drehströmung über festem Grunde. Z. Angew. Math. Mech. 20, 241245.
5. Brink, K. H. 1997 Time-dependent motions and the nonlinear bottom Ekman layer. J. Mar. Res. 55, 613631.
6. Carnevale, G. F., Briscolini, M., Kloosterziel, R. C. & Vallis, G. K. 1997 Three-dimensionally perturbed vortex tubes in a rotating flow. J. Fluid Mech. 341, 127163.
7. Davidson, P. A. 1989 The interaction between swirling and recirculating velocity components in unsteady, inviscid flow. J. Fluid Mech. 209, 3555.
8. Davidson, P. A. 2004 Turbulence: An Introduction for Scientists and Engineers. Oxford University Press.
9. Dolzhanskii, F. V., Krymov, V. A. & Manin, D. Y. 1990 Stability and vortex structures of quasi-two-dimensional flows. Sov. Phys. Uspekhi 33, 495520.
10. Dolzhanskii, F. V., Krymov, V. A. & Manin, D. Y. 1992 An advanced experimental investigation of quasi-two-dimensional shear flows. J. Fluid Mech. 241, 705722.
11. Duran-Matute, M., Albagnac, J., Kamp, L. P. J. & van Heijst, G. J. F. 2010a Dynamics and structure of decaying shallow dipolar vortices. Phys. Fluids 22, 116606.
12. Duran-Matute, M., Kamp, L. P. J., Trieling, R. R. & van Heijst, G. J. F. 2010b Scaling of decaying shallow axisymmetric swirl flows. J. Fluid Mech. 648, 471484.
13. Hart, J. E. 2000 A note on nonlinear correction to the Ekman layer pumping velocity. Phys. Fluids 12, 131135.
14. Hopfinger, E. J. 1982 Turbulence and waves in a rotating tank. J. Fluid Mech. 125, 505534.
15. Hopfinger, E. J. & van Heijst, G. J. F. 1993 Vortices in rotating fluids. Annu. Rev. Fluid Mech. 25, 241289.
16. Ishida, S. & Iwayama, T. 2006 A comprehensive analysis of nonlinear corrections to the classical Ekman pumping. J. Met. Soc. Japan 89, 839851.
17. von Kármán, T. 1921 Über laminare und turbulente Reibung. Z. Angew. Math. Mech. 1, 233252.
18. Kellay, H. & Goldburg, W. I. 2002 Two-dimensional turbulence: a review of some recent experiments. Rep. Prog. Phys. 65, 845894.
19. Kloosterziel, R. C. & van Heijst, G. J. F. 1991 An experimental study of unstable barotropic vortices in a rotating fluid. J. Fluid Mech. 223, 124.
20. Kloosterziel, R. C. & van Heijst, G. J. F. 1992 The evolution of stable barotropic vortices in a rotating free-surface fluid. J. Fluid Mech. 239, 607629.
21. Morize, C., Moisy, F. & Rabaud, M. 2005 Decaying grid turbulence in a rotating tank. Phys. Fluids 17, 095105.
22. Orlandi, P. & Carnevale, G. F. 1999 Evolution of isolated vortices in a rotating fluid of finite depth. J. Fluid Mech. 381, 239269.
23. Paret, J. & Tabeling, P. 1997 Experimental observation of the two-dimensional inverse energy cascade. Phys. Rev. Lett. 79, 41624165.
24. Pedlosky, J. 1987 Geophysical Fluid Dynamics, 2nd edn. Springer.
25. Satijn, M. P., Cense, A. W., Verzicco, R., Clercx, H. J. H. & van Heijst, G. J. F. 2001 Three-dimensional structure and decay properties of vortices in shallow fluid layers. Phys. Fluids 13, 19321945.
26. Staplehurst, P. J., Davidson, P. A. & Dalziel, S. B. 2008 Structure formation in homogeneous freely decaying rotating turbulence. J. Fluid Mech. 598, 81105.
27. Tabeling, P. 2002 Two-dimensional turbulence: a physicist approach. Phys. Rep. 362, 162.
28. Tabeling, P., Burkhart, S., Cardoso, O. & Willaime, H. 1991 Experimental study of freely decaying two-dimensional turbulence. Phys. Rev. Lett. 67, 37723775.
29. Thomson, W. 1910 Vibrations of a columnar vortex. Math. Phys. Papers 4, 152165.
30. Velasco Fuentes, O. U. 2009 Kelvin’s discovery of Taylor columns. Eur. J. Mech. B/Fluids 28, 469472.
31. Zavala Sansón, L. & van Heijst, G. J. F. 2000 Nonlinear Ekman effects in rotating barotropic flows. J. Fluid Mech. 412, 7591.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Regimes of two-dimensionality of decaying shallow axisymmetric swirl flows with background rotation

  • M. Duran-Matute (a1), L. P. J. Kamp (a1), R. R. Trieling (a1) and G. J. F. van Heijst (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed