Skip to main content Accessibility help
×
Home

Receptivity coefficients at excitation of cross-flow waves due to scattering of free-stream vortices on surface vibrations

  • V. I. Borodulin (a1), A. V. Ivanov (a1), Y. S. Kachanov (a1) and A. P. Roschektaev (a1)

Abstract

This paper is devoted to an experimental investigation of receptivity of a laminar swept-wing boundary layer due to scattering of free-stream vortices on localized (in the streamwise direction) surface vibrations. The experiments were conducted under completely controlled disturbance conditions by means of a hot-wire anemometer on a model of a swept wing with a sweep angle of 25°. Both the free-stream vortices and the surface vibrations were generated by disturbance sources; their frequency–wavenumber spectra were measured thoroughly. The free-stream vorticity vectors were directed perpendicular to the incident-flow velocity vector and parallel to the swept-wing-model surface. The linearity of the receptivity mechanism under investigation (in a sense that the corresponding receptivity coefficients are independent of the disturbances amplitudes) has been checked carefully. The main goal of this experiment was to estimate the vibration-vortex receptivity coefficients as functions of the disturbance frequency, spanwise wavenumber and vortex offset parameter. This goal has been attained. Being defined in Fourier space, the obtained receptivity coefficients are independent of the specific surface vibration shape and can be used for verification of various receptivity theories.

Copyright

Corresponding author

Email address for correspondence: kachanov@itam.nsc.ru

References

Hide All
Bake, S., Borodulin, V. I., Kachanov, Y. S. & Roschektayev, A. P. 2002a Experimental study of 3D localized boundary-layer receptivity to free-stream vortices by means of two-source method. In XI International Conference on Methods of Aerophysical Research. Proceedings. Part I, pp. 2833. Inst. Theor. and Appl. Mech.
Bake, S., Ivanov, A. V., Fernholz, H. H., Neemann, K. & Kachanov, Y. S. 2002b Receptivity of boundary layers to three dimensional disturbances. Eur. J. Mech. (B/Fluids) 19 (1), 2948.
Bertolotti, F. P. 1996 On the birth and evolution of disturbances in three-dimensional boundary layers. In Nonlinear Instability and Transition in Three-Dimensional Boundary Layers (ed. Duck, P. W. & Hall, P.), pp. 247256. Kluwer.
Bertolotti, F. P. 1997 Response of the blasius boundary layer to free-stream vorticity. Phys. Fluids A 9 (8), 22862299.
Bertolotti, F. P. & Kendall, J. M.1997 Response of the blasius boundary layer to controlled free-stream vortices of axial form. AIAA Paper 97-2018.
Boiko, A. V. 2002a Receptivity of a flat plate boundary layer to a free stream axial vortex. Eur. J. Mech. (B/Fluids) 21, 325340.
Boiko, A. V. 2002b Swept-wing boundary layer receptivity to a steady free-stream vortex disturbance. Fluid Dyn. 37 (1), 3745.
Boiko, A. V., Dovgal, A. V., Grek, G. R. & Kozlov, V. V. 2002 The Origin of Turbulence in Near-Wall Flows. Springer.
Borodulin, V. I., Fedenkova, A. A., Ivanov, A. V., Kachanov, Y. S. & Komarova, V. Y. 2005 3D distributed boundary-layer receptivity to non-stationary free-stream vortices in presence of surface roughness. In 21st International Congress of Theoretical and Applied Mechanics. ICTAM Proceedings (Extended Summaries on CD-ROM) (ed. Gutkowski, W. & Kowalewski, T. A.), Springer.
Borodulin, V. I., Gaponenko, V. R., Ivanov, A. V., Kachanov, Y. S. & Crouch, J. D. 2000 Stability of a swept-wing boundary layer to stationary and traveling disturbances. Experiment and theory. In Stability of Flows of Homogeneous and Heterogeneous Fluids (ed. Rudyak, V. Y.), vol. 7, pp. 150153. Inst. Theor. and Appl. Mech. (in Russian).
Borodulin, V. I., Ivanov, A. V., Kachanov, Y. S. & Fedenkova, A. A. 2004a Distributed boundary-layer receptivity to non-stationary vortical disturbances with wall-normal vorticity in the presence of surface roughness. Thermophys. Aeromech. 11 (3), 355390.
Borodulin, V. I., Ivanov, A. V., Kachanov, Y. S. & Fedenkova, A. A. 2007 Three-dimensional distributed receptivity of a boundary layer to unsteady vortex disturbances. In XIII International Conference on Methods of Aerophysical Research. Proceedings. Part III, pp. 4550. Publ. House ‘Parallel’.
Borodulin, V. I., Ivanov, A. V., Kachanov, Y. S. & Komarova, V. Y. 2006 Distributed two-dimensional boundary-layer receptivity to non-stationary vortical disturbances in the presence of surface roughness. Thermophys. Aeromech. 13 (2), 183208.
Borodulin, V. I., Ivanov, A. V., Kachanov, Y. S. & Roschektayev, A. P. 2008a Excitation of cross-flow instability modes at scattering of free-stream vortices on surface roughness. In XIV International Conference on Methods of Aerophysical Research. June 30–July 6, 2008. Proceedings (ed. Fomin, V. M.), ITAM SB RAS.
Borodulin, V. I., Ivanov, A. V., Kachanov, Y. S. & Roschektayev, A. P. 2008b Vortex receptivity of a swept-wing boundary layer in presence of surface vibrations. In XIV International Conference on Methods of Aerophysical Research. June 30–July 6, 2008. Proceedings (ed. Fomin, V. M.), ITAM SB RAS.
Borodulin, V. I., Ivanov, A. V., Kachanov, Y. S. & Roschektayev, A. P. 2013 Receptivity coefficients at excitation of cross-flow waves by free-stream vortices in the presence of surface roughness. J. Fluid Mech. 716, 487527.
Borodulin, V. I., Kachanov, Y. S., Roschektayev, A. P. & Bake, S. 2004b Experimental study of 3D receptivity of a boundary layer to free-stream vortices during their scattering on localized surface vibrations. Thermophys. Aeromech. 11 (2), 185198.
Bottaro, A. 2010 A receptive boundary layer. J. Fluid Mech. 646, 14.
Choudhari, M.1994 Localized and distributed boundary-layer receptivity to convected unsteady wake in free stream. NASA CR-4578.
Choudhari, M.1996 Boundary-layer receptivity to three-dimensional unsteady vortical disturbances in free stream. AIAA Paper 96-0181.
Choudhari, M. & Streett, C. L. 1992 A finite Reynolds number approach for the prediction of boundary-layer receptivity in localized regions. Phys. Fluids 4, 24952514.
Crouch, J. D. 1994 Distributed excitation of Tollmien–Schlichting waves by vortical free-stream disturbances. Phys. Fluids 6 (1), 217223.
Crouch, J. D.1997 Transition prediction and control for airplane applications. AIAA Paper 97-1907.
Crouch, J. D., Gaponenko, V. R., Ivanov, A. V. & Kachanov, Y. S. 1997 Theoretical and experimental comparisons of the stability and receptivity of swept-wing boundary layers. Bull. Am. Phys. Soc. 42, 2174.
Crouch, J. D., Gaponenko, V. R., Ivanov, A. V. & Kachanov, Y. S. 1998 A method of experimental determination of the linear receptivity coefficients of a 3D boundary layer subjected to microscopic surface non-uniformities. Verification of theory. In Proceedings of the 9th International Conference on Methods of Aerophysical Research. Part II, pp. 3035. Inst. Theor. and Appl. Mech.
Crouch, J. D. & Ng, L. L. 1997 Variable $n$ -factor method for transition prediction in three-dimensional boundary layers. AIAA J. 38 (2), 211216.
Dietz, A. J. 1999 Local boundary-layer receptivity to a connected free-stream disturbances. J. Fluid Mech. 378, 291317.
Gaponenko, V. R., Ivanov, A. V. & Kachanov, Y. S. 1995a Experimental study of a swept-wing boundary-layer stability with respect to unsteady disturbances. Thermophys. Aeromech. 2 (4), 287312.
Gaponenko, V. R., Ivanov, A. V. & Kachanov, Y. S. 1995b Experimental study of cross-flow instability of a swept-wing boundary layer with respect to traveling waves. In Laminar-Turbulent Transition (ed. Kobayashi, R.), pp. 373380. Springer.
Gaponenko, V. R., Ivanov, A. V., Kachanov, Y. S. & Crouch, J. D. 2002 Swept-wing boundary-layer receptivity to surface non-uniformities. J. Fluid Mech. 461, 93126.
Gianetti, F. & Luchini, P. 2006 Leading edge receptivity by adjoint methods. J. Fluid Mech. 547, 2153.
Goldstein, M. E. 1983 The evolution of Tollmien–Schlichting waves near a leading edge. J. Fluid Mech. 127, 5981.
Goldstein, M. E. 1985 Scattering of acoustic waves into Tollmien–Schlichting waves by small streamwise variations in surface geometry. J. Fluid Mech. 154, 509529.
Goldstein, M. E. & Leib, S. J. 1993 Three-dimensional boundary layer instability and separation induced by small-amplitude streamwise vorticity in the upstream flow. J. Fluid Mech. 246, 2141.
Goldstein, M. E., Leib, S. J. & Cowley, S. J. 1992 Distortion of a flat-plate boundary layer by free-stream vorticity normal to the plate. J. Fluid Mech. 237, 231260.
Goldstein, M. E. & Sescu, A. 2008 Boundary-layer transition at high free-stream disturbance levels – beyond Klebanoff modes. J. Fluid Mech. 613, 95124.
Ivanov, A. V., Kachanov, Y. S. & Koptsev, D. B. 1998 Method of phased roughness for determining the acoustic receptivity coefficients. In IX International Conference on Methods of Aerophysical Research. Proceedings. Part II, pp. 8994. Inst. Theor. and Appl. Mech.
Ivanov, A. V., Kachanov, Y. S. & Koptsev, D. B. 2001 Excitation of cross-flow instability waves by acoustic field in presence of a surface roughnes. Thermophys. Aeromech. 8 (3), 345361.
Ivanov, A. V., Kachanov, Y. S. & Obolentseva, T. G. 1999 Experimental study of blasius boundary layer receptivity to localized surface vibrations. Thermophys. Aeromech. 6 (2), 179191.
Ivanov, A. V., Würz, W., Herr, S., Wagner, S. & Kachanov, Y. S. 2005 Experimental investigation of 3D acoustic receptivity of an airfoil boundary layer due to surface vibrations. Eur. J. Mech. (B/Fluids) 24 (5), 621641.
Kachanov, Y. S. 2000 Three-dimensional receptivity of boundary layers. Eur. J. Mech. (B/Fluids) 19 (5), 723744.
Kachanov, Y. S., Borodulin, V. I., Ivanov, A. V. & Roschektayev, A. P.2001a Swept-wing boundary-layer vortex receptivity due to surface non-uniformities. Part 1. External and surface perturbations and evolution of excited cross-flow waves. Tech. Rep. Interim Project Report on Agreement No 106 (Exhibit 106H, Part A), June 2001. Inst. Theor. and Appl. Mech.
Kachanov, Y. S., Borodulin, V. I., Ivanov, A. V. & Roschektayev, A. P.2001b Swept-wing boundary-layer vortex receptivity due to surface non-uniformities. Part 2. Disturbance spectra and receptivity coefficients. Tech. Rep. Final Project Report on Agreement No 106 (Exhibit 106H, Part A), November 2001. Inst. Theor. and Appl. Mech.
Kachanov, Y. S., Koptsev, D. B. & Smorodsky, B. V. 2002 Study of three-dimensional receptivity of a 2d boundary layer with a positive pressure gradient to surface vibrations. Experiment and theory. Thermophys. Aeromech. 9 (3), 371392.
Kachanov, Y. S., Kozlov, V. V. & Levchenko, V. Y. 1979a Origin of Tollmien–Schlichting waves in boundary layer under the influence of external disturbances. Fluid Dyn. 13, 704711.
Kachanov, Y. S., Kozlov, V. V. & Levchenko, V. Y. 1982 Origin of Turbulence in Boundary Layer. Nauka (in Russian).
Kachanov, Y. S., Kozlov, V. V., Levchenko, V. Y. & Maksimov, V. P. 1979b Transformation of external disturbances into the boundary layer waves. In Proceedings of the Sixth International Conference on Numerical Methods in Fluid Dyn., pp. 299307. Springer.
Kendall, J. M.1985 Experimental study of disturbances produced in a pre-transitional laminar boundary layer by weak free stream turbulence. AIAA Paper 85-1695.
Kendall, J. M.1990 Boundary-layer receptivity to freestream turbulence. AIAA Paper 90-1504.
Kendall, J. M.1991 Studies on laminar boundary-layer receptivity to free-stream turbulence near a leading edge. ASME Tech. Rep. FED Vol. 114. Boundary-Layer Stability and Transition to Turbulence.
Kerschen, E. J. 1990 Boundary-layer receptivity theory. Appl. Mech. Rev. 43, S152S157.
Kerschen, E. J. 1991 Linear and non-linear receptivity to vortical free-stream disturbances. In Boundary Layer Stability and Transition to Turbulence (ed. Reda, D. C., Reed, H. L. & Kobayashi, R. K.), vol. 114, pp. 4348. ASME Tech. Rep. FED.
Kogan, M. N., Shumilkin, V. G., Ustinov, M. V. & Zhigulev, S. G. 2001 Experimental study of flat-plate boundary layer receptivity to vorticity normal to leading edge. Eur. J. Mech. (B/Fluids) 20, 813820.
Leehey, P. 1980 Influence of environment in laminar boundary layer control. In Viscous Flow Drag Reduction, Progress in Astronautics and Aeronautics (ed. Hough, G. R.), vol. 72, pp. 416. AIAA Benjamin.
Mack, L. M.1975 A numerical method for the prediction of high speed boundary-layer transition using linear theory. NASA SP-347.
Mack, L. M.1977 Transition, prediction and linear stability theory. AGARD CP-224. Paper No. 1.
Nishioka, M. & Morkovin, M. V. 1986 Boundary-layer receptivity to unsteady pressure gradients: experiments and overview. J. Fluid Mech. 171, 219261.
Ricco, P., Luo, J. & Wu, X. 2011 Evolution and instability of unsteady nonlinear streaks generated by free-stream vortical disturbances. J. Fluid Mech. 677, 138.
Ricco, P. & Wu, X. 2007 Response of a compressible laminar boundary layer to free-stream vortical disturbances. J. Fluid Mech. 587, 97138.
Rogler, H. L. & Reshotko, E. 1975 Disturbances in a boundary layer introduced by a low intensity array of vortices. SIAM J. Appl. Mech. 28 (2), 431462.
Ruban, A. I. 1985 On the generation of Tollmien–Schlichting waves by sound. Fluid Dyn. 25 (2), 213221.
Saric, W., Reed, H. & Kerschen, E. 2002 Boundary-layer receptivity to freestream disturbances. Annu. Rev. Fluid Mech. 34, 291319.
Saric, W. S., Reed, H. L. & Kerschen, E.1994 Leading edge receptivity to sound: experiments, dns, and theory. AIAA Paper 942222.
Saric, W. S., Reed, H. L. & White, E. B.1999 Boundary-layer receptivity to freestream disturbances and its role in transition. AIAA Paper 99-3788.
Saric, W. S., Wei, W., Rasmussen, B. K. & Krutckoff, T. K.1995 Experiments on leading-edge receptivity to sound. AIAA Paper 952253.
Schrader, L. U., Amin, S. & Brandt, L. 2010 Transition to turbulence in the boundary layer over a smooth and a rough swept plate exposed to free-stream turbulence. J. Fluid Mech. 646, 297325.
Tempelmann, D. T., Schrader, L. U., Hanifi, A., Brandt, L. & Henningson, D. S.2011 Numerical study of boundary-layer receptivity on a swept wing. AIAA Paper 2011-3294.
Ustinov, M. V. 2001a Receptivity of a flat plate boundary layer to a free stream axial vortex. Eur. J. Mech. (B/Fluids) 20, 799812.
Ustinov, M. V. 2001b Receptivity of the swept wing boundary layer to a steady flow inhomogeneity. Fluid Dyn. 36 (3), 437447.
Ustinov, M. V. 2002 Receptivity of the blunt-leading-edge plate boundary layer to unsteady vortex perturbations. Fluid Dyn. 37 (4), 556567.
Wu, X. 2001a On local boundary-layer receptivity to vortical disturbances in the free-stream. J. Fluid Mech. 449, 373393.
Wu, X. & Choudhari, M. 2003 Linear and non-linear instabilities of a blasius boundary layer perturbed by streamwise vortices. Part 2. Intermittent instability induced by long-wavelength Klebanoff modes. J. Fluid Mech. 483, 249286.
Wu, X., Zhao, D. & Luo, J. 2011 Excitation of steady and unsteady Görtler vortices by free-stream vortical disturbances. J. Fluid Mech. 682, 66100.
Wu, X. S. 2001b Receptivity of boundary layers with distributed roughness to vortical and acoustic disturbances: a second-order asymptotic theory and comparison with experiments. J. Fluid Mech. 431, 91133.
Wundrow, D. W. & Goldstein, M. E. 2001 Effect on a laminar boundary layer of small-amplitude streamwise vorticity in the upstream flow. J. Fluid Mech. 426, 229262.
Würz, W., Herr, S., Wagner, S. & Kachanov, Y. S. 2002 A first experimental approach to the distributed 3D-vortex receptivity of a boundary layer on an airfoil. In XI International Conference on Methods of Aerophysical Research. Proceedings. Part II, pp. 173178. Inst. Theor. and Appl. Mech.
Würz, W., Herr, S., Wörner, A., Rist, U., Wagner, S. & Kachanov, Y. S. 2003 Three-dimensional acoustic-roughness receptivity of a boundary layer on an airfoil: experiment and direct numerical simulations. J. Fluid Mech. 478, 135163.
Zavol’skii, N. A., Reutov, V. P. & Rybushkina, G. V. 1983 Excitation of Tollmien–Schlichting waves by acoustic and vortex disturbance scattering in boundary layer on a wavy surface. J. Appl. Mech. Tech. Phys. 24, 355361.
Zhigulev, V. N. & Tumin, A. M. 1987 Onset of Turbulence. Dynamical Theory of Excitation and Development of Instabilities in Boundary Layers. Nauka (in Russian).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Receptivity coefficients at excitation of cross-flow waves due to scattering of free-stream vortices on surface vibrations

  • V. I. Borodulin (a1), A. V. Ivanov (a1), Y. S. Kachanov (a1) and A. P. Roschektaev (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed