Skip to main content Accessibility help

Rayleigh–Taylor instability of an inclined buoyant viscous cylinder



The Rayleigh–Taylor instability of an inclined buoyant cylinder of one very viscous fluid rising through another is examined through linear stability analysis, numerical simulation and experiment. The stability analysis represents linear eigenmodes of a given axial wavenumber as a Fourier series in the azimuthal direction, allowing the use of separable solutions to the Stokes equations in cylindrical polar coordinates. The most unstable wavenumber k∗ is long-wave if both the inclination angle α and the viscosity ratio λ (internal/external) are small; for this case, k∗ ∝ max{α, (λ ln λ−1)1/2} and thus a small angle in experiments can have a significant effect for λ ≪ 1. As α increases, the maximum growth rate decreases and the upward propagation rate of disturbances increases; all disturbances propagate without growth if the cylinder is sufficiently close to vertical, estimated as α ≳ 70°. Results from the linear stability analysis agree with numerical calculations for λ = 1 and experimental observations. A point-force numerical method is used to calculate the development of instability into a chain of individual plumes via a complex three-dimensional flow. Towed-source experiments show that nonlinear interactions between neighbouring plumes are important for α ≳ 20° and that disturbances can propagate out of the system without significant growth for α ≳ 40°.


Corresponding author

Email address for correspondence:


Hide All
Ascoli, E. P. & Lagnado, R. R. 1992 The linear stability of a spherical drop migrating in a vertical temperature gradient. Phys. Fluids 4, 225233.
Batchelor, G. K. 1970 Slender-body theory for particles of arbitrary cross-section in Stokes flow. J. Fluid Mech. 44, 419440.
de Bremond d'Ars, J., Jaupart, C. & Sparks, R. S. J. 1995 Distribution of volcanoes in active margins. J. Geophys. Res. 100, 2042120432.
Chandrasekhar, S. 1981 Hydrodynamic and Hydromagnetic Stability. Dover.
Cox, R. G. 1970 The motion of long slender bodies in a viscous fluid. Part 1. General theory. J. Fluid Mech. 44, 791810.
Ekiel-Jeżewska, M. L., Metzger, B. & Guazzelli, E. 2006 Spherical cloud of point particles falling in a viscous fluid. Phys. Fluids 18, 038104.
Fedotov, S. A. 1975 Mechanism of magma ascent and deep feeding channels of island arc volcanoes. Bull. Volcanol. 39 (2), 114.
Hickox, C. E. 1971 Instability due to viscosity and density stratification in axisymmetric pipe flow. Phys. Fluids 14, 251262.
Hinch, E. J. 1991 Perturbation Methods. Cambridge University Press.
Hinch, E. J. & Acrivos, A. 1980 Long slender drops in a simple shear flow. J. Fluid Mech. 98, 305328.
Huppert, H. E., Sparks, R. S. J., Whitehead, J. A. & Hallworth, M. A. 1986 The replenishment of magma chambers by light inputs. J. Geophys. Res. 91, 61136122.
Joseph, D. D., Bai, R., Chen, K. P. & Renardy, Y. Y. 1997 Core-annular flows. Annu. Rev. Fluid Mech. 29, 6590.
Kerr, R. C. & Lister, J. R. 1988 Island arc and mid-ocean ridge volcanism, modelled by diapirism from linear source regions. Earth Planet. Sci. Lett. 88, 143152.
Kerr, R. C. & Lister, J. R. 2008 Rise and deflection of mantle plume tails. Geochem. Geophys. Geosyst. 9, Q10004.
Kerr, R. C. & Mériaux, C. 2004 Structure and dynamics of sheared mantle plumes. Geochem. Geophys. Geosyst. 5, Q12009.
Kerr, R. C., Mériaux, C. & Lister, J. R. 2008 Effect of thermal diffusion on the stability of strongly tilted mantle plume tails. J. Geophys. Res. 113, B09401.
Koh, C. J. & Leal, G. 1989 The stability of drop shapes for translation at zero Reynolds number through a quiescent fluid. Phys. Fluids 1, 13091313.
Kojima, M., Hinch, E. J. & Acrivos, A. 1984 The formation and expansion of a toroidal drop moving in a viscous fluid. Phys. Fluids 27, 1932.
Lister, J. R. 1987 Long-wavelength instability of a line plume. J. Fluid Mech. 175, 413428.
Lister, J. R. 1989 Selective withdrawal from a viscous two-layer system. J. Fluid Mech. 198, 231254.
Lister, J. R. & Kerr, R. C. 1989 The effect of geometry on the gravitational instability of a buoyant region of viscous fluid. J. Fluid Mech. 202, 577594.
Machu, G., Meile, W., Nitsche, L. & Schaflinger, U. 2001 Coalescence, torus formation and breakup of sedimenting drops: experiments and computer simulations. J. Fluid Mech. 447, 299336.
Metzger, B., Nicolas, M. & Guazzelli, E. 2007 Falling clouds of particles in viscous fluids. J. Fluid Mech. 580, 283301.
Neuber, H. 1934 Ein neuer Ansatz zur Lösung räumblicher Probleme der Elastizitätstheorie. Z. Angew. Math. Mech. 14, 203212
Papkovich, P. F. 1932 Solution générale des équations differentielles fondamentales d'élasticité exprimé par trois fonctions harmoniques. C. R. Acad. Sci., Paris 195, 513515.
Pignatel, F., Nicolas, M., Guazzelli, E. & Saintillan, D. 2009 Falling jets of particles in viscous fluids. Phys. Fluids 21, 123303.
Pozrikidis, C. 1990 The instability of a moving viscous drop. J. Fluid Mech. 210, 121.
Proudman, I. & Pearson, J. R. A. 1956 Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder. J. Fluid Mech. 2, 237262.
Ramberg, H. 1968 Instability of layered systems in a field of gravity. Parts 1 and 2. Phys. Earth Planet. Inter. 1, 427474.
Richards, M. A. & Griffiths, R. W. 1988 Deflection of plumes by mantle shear flow: experimental results and a simple theory. Geophys. J. 94, 367376.
Richards, M. A. & Griffiths, R. W. 1989 Thermal entrainment by deflected mantle plumes. Nature 342, 900902.
Schouten, H., Klitgord, K. D. & Whitehead, J. A. 1985 Segmentation of mid-ocean ridges. Nature 317, 225229.
Selig, F. 1965 A theoretical prediction of salt dome patterns. Geophysics 30, 633643.
Sierou, A. & Lister, J. R. 2003 Self-similar solutions for viscous capillary pinch-off. J. Fluid Mech. 497, 381403.
Sigurdsson, H. & Sparks, R. S. J. 1978 Lateral magma flow within rifted Icelandic crust. Nature 274, 126130.
Skilbeck, J. N. & Whitehead, J. A. 1978 Formation of discrete islands in linear island chains. Nature 272, 499501.
Steinberger, B. 2000 Plumes in a convecting mantle: models and observations for individual hotspots. J. Geophys. Res. 105, 11 12711 152.
Steinberger, B. & O'Connell, R. J. 1998 Advection of plumes in mantle flow: implications for hotspot motion, mantle viscosity and plume distribution. Geophys. J. Intl 132, 412434.
Taylor, G. I. 1964 Conical free surfaces and fluid interfaces. In Proceedings of the 11th International Congress on Theoretical and Applied Mechanics, Munich (ed. Görtler, H.), pp. 790796. Springer.
Whitehead, J. A. 1982 Instabilities of fluid conduits in a flowing earth – are plates lubricated by the asthenosphere? Geophys. J. R. Astron. Soc. 70, 415433.
Whitehead, J. A. & Luther, D. S. 1975 Dynamics of laboratory diapir and plume models. J. Geophys. Res. 80, 705717.
Whittaker, R. J. & Lister, J. R. 2008 a The self-similar rise of a buoyant thermal in Stokes flow. J. Fluid Mech. 606, 295324.
Whittaker, R. J. & Lister, J. R. 2008 b Slender-body theory for steady sheared plumes in viscous fluid. J. Fluid Mech. 612, 2144.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed