Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-19T20:19:46.108Z Has data issue: false hasContentIssue false

Rayleigh–Bénard convection with an immersed floating body

Published online by Cambridge University Press:  11 January 2024

Peter Frick*
Affiliation:
Institute of Continuous Media Mechanics, Ak. Korolyov 1, Perm 614018, Russia
Sergei Filimonov
Affiliation:
Kutateladze Institute of Thermophysics SB RAS, Lavrentieva av. 1, Novosibirsk 630090, Russia
Andrei Gavrilov
Affiliation:
Kutateladze Institute of Thermophysics SB RAS, Lavrentieva av. 1, Novosibirsk 630090, Russia
Elena Popova
Affiliation:
Institute of Continuous Media Mechanics, Ak. Korolyov 1, Perm 614018, Russia
Andrei Sukhanovskii
Affiliation:
Institute of Continuous Media Mechanics, Ak. Korolyov 1, Perm 614018, Russia
Andrei Vasiliev
Affiliation:
Institute of Continuous Media Mechanics, Ak. Korolyov 1, Perm 614018, Russia
*
Email address for correspondence: frick@icmm.ru

Abstract

The paper presents the results of an experimental and numerical study of turbulent thermal convection in a rectangular box containing an extended immersed free-floating plate. Varying the values of control parameters, such as Rayleigh number, aspect ratio and vertical position of the plate, provides a wide range of possible modes, from immobile and purely periodic to stochastic. We have shown that stable periodic motions occur when the plate floats close to one of the heat exchangers. An increase in the distance between the plate and the heat exchanger breaks the periodic motion and (at moderate Rayleigh numbers) leads to a pronounced asymmetry, when the plate stays close to one of the walls most of the time, makes rare excursions to the opposite wall and immediately returns. As the Rayleigh number increases, the plate motions from one edge of the box to the other reappear, but always have an irregular character. Regarding the dependence of the system behaviour on the geometry of the box, both lower and upper limits of periodic plate motions were found in the experiments. In the numerical simulations, the upper limit was not achieved – the plate moves quasi-periodically through the chain of vortices of different signs even at the largest aspect ratio being considered. The heat-insulating floating plate provides the spatial and temporal variation of the heat flux and reduces the integral heat flux, but the reduction in heat flux depends significantly on the vertical position of the plate.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81 (2), 503.CrossRefGoogle Scholar
Bakhuis, D., Ostilla-Mónico, R., van der Poel, E.P., Verzicco, R. & Lohse, D. 2018 Mixed insulating and conducting thermal boundary conditions in Rayleigh–Bénard convection. J. Fluid Mech. 835, 491511.CrossRefGoogle Scholar
Bao, Y., Chen, J., Liu, B.-F., She, Z.S., Zhang, J. & Zhou, Q. 2015 Enhanced heat transport in partitioned thermal convection. J. Fluid Mech. 784, R5.CrossRefGoogle Scholar
Celik, I.B., Ghia, U., Roache, P.J. & Freitas, C.J. 2008 Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. Trans. ASME J. Fluids Engng 130 (7), 078001.Google Scholar
Chillà, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35, 125.CrossRefGoogle ScholarPubMed
Ciliberto, S., Cioni, S. & Laroche, C. 1996 Large-scale flow properties of turbulent thermal convection. Phys. Rev. E 54 (6), R5901.CrossRefGoogle ScholarPubMed
Cooper, C.M., Moresi, L.-N. & Lenardic, A. 2013 Effects of continental configuration on mantle heat loss. Geophys. Res. Lett. 40 (11), 26472651.CrossRefGoogle Scholar
Elder, J. 1967 Convective self-propulsion of continents. Nature 214 (5089), 657660.CrossRefGoogle Scholar
Filimonov, S.A., Gavrilov, A.A., Dekterev, A.A. & Litvintsev, K.Y. 2023 Mathematical modeling of the interaction of a thermal convective flow and a moving body. Comput. Contin. Mech. 16 (1), 89100.CrossRefGoogle Scholar
Gurnis, M. 1988 Large-scale mantle convection and the aggregation and dispersal of supercontinents. Nature 332 (6166), 695699.CrossRefGoogle Scholar
Jiang, H., Zhu, X., Mathai, V., Verzicco, R., Lohse, D. & Sun, C. 2018 Controlling heat transport and flow structures in thermal turbulence using ratchet surfaces. Phys. Rev. Lett. 120, 044501.CrossRefGoogle ScholarPubMed
Mac Huang, J., Zhong, J.Q., Zhang, J. & Mertz, L. 2018 Stochastic dynamics of fluid–structure interaction in turbulent thermal convection. J. Fluid Mech. 854, R5.CrossRefGoogle Scholar
Mao, Y. 2021 An insulating plate drifting over a thermally convecting fluid: the effect of plate size on plate motion, coupling modes and flow structure. J. Fluid Mech. 916, A18.CrossRefGoogle Scholar
Mao, Y., Zhong, J.Q. & Zhang, J. 2019 The dynamics of an insulating plate over a thermally convecting fluid and its implication for continent movement over convective mantle. J. Fluid Mech. 868, 286315.CrossRefGoogle Scholar
Mittal, R. & Iaccarino, G. 2005 Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239261.CrossRefGoogle Scholar
Nandukumar, Y., Chakraborty, S., Verma, M.K. & Lakkaraju, R. 2019 On heat transport and energy partition in thermal convection with mixed boundary conditions. Phys. Fluids 31 (6), 066601.CrossRefGoogle Scholar
van der Poel, E.P., Stevens, R.J.A.M., Sugiyama, K. & Lohse, D. 2012 Flow states in two-dimensional Rayleigh–Bénard convection as a function of aspect-ratio and Rayleigh number. Phys. Fluids 24 (8), 085104.CrossRefGoogle Scholar
Popova, E.N. & Frik, P.G. 2003 Large-scale flows in a turbulent convective layer with an immersed moving thermal insulator. Fluid Dyn. 38 (6), 862867.CrossRefGoogle Scholar
Popova, E.N., Vasiliev, A.Y., Sukhanovskii, A.N. & Frick, P.G. 2022 Dynamics of a convective system with a floating extended thermal insulator. Bull. Perm Univ. Phys. 3, 3847.CrossRefGoogle Scholar
Schubert, G., Turcotte, D.L. & Olson, P. 2001 Mantle Convection in the Earth and Planets. Cambridge University Press.CrossRefGoogle Scholar
Sukhanovskii, A. & Vasiliev, A. 2022 Physical mechanism of the convective heat flux increasing in case of mixed boundary conditions in Rayleigh–Bénard convection. Intl J. Heat Mass Transfer 185, 122411.CrossRefGoogle Scholar
Toppaladoddi, S., Succi, S. & Wettlaufer, J.S. 2017 Roughness as a route to the ultimate regime of thermal convection. Phys. Rev. Lett. 118 (7), 074503.CrossRefGoogle Scholar
Vasiliev, A. & Sukhanovskii, A. 2021 Turbulent convection in a cube with mixed thermal boundary conditions: low Rayleigh number regime. Intl J. Heat Mass Transfer 174, 121290.CrossRefGoogle Scholar
Vasiliev, A., Sukhanovskii, A. & Frick, P. 2022 Influence of horizontal heat-insulating plates on the structure of convective flows and heat transfer in a closed cavity. Comput. Contin. Mech. 15 (1), 8397.CrossRefGoogle Scholar
Wang, F., Huang, S.D. & Xia, K.Q. 2017 Thermal convection with mixed thermal boundary conditions: effects of insulating lids at the top. J. Fluid Mech. 817, R1.CrossRefGoogle Scholar
Wang, K. & Zhang, J. 2023 Persistent corotation of the large-scale flow of thermal convection and an immersed free body. Proc. Natl Acad. Sci. 120 (21), e2217705120.CrossRefGoogle Scholar
Wang, Q., Verzicco, R., Lohse, D. & Shishkina, O. 2020 Multiple states in turbulent large-aspect-ratio thermal convection: what determines the number of convection rolls? Phys. Rev. Lett. 125 (7), 074501.CrossRefGoogle ScholarPubMed
Whitehead, J.A. & Behn, M.D. 2015 The continental drift convection cell. Geophys. Res. Lett. 42 (11), 43014308.CrossRefGoogle Scholar
Xia, K.Q. 2013 Current trends and future directions in turbulent thermal convection. Theor. Appl. Mech. Lett. 3 (5), 052001.CrossRefGoogle Scholar
Xie, Y.C. & Xia, K.Q. 2017 Turbulent thermal convection over rough plates with varying roughness geometries. J. Fluid Mech. 825, 573599.CrossRefGoogle Scholar
Zhang, J. & Libchaber, A. 2000 Periodic boundary motion in thermal turbulence. Phys. Rev. Lett. 84 (19), 43614364.CrossRefGoogle ScholarPubMed
Zhang, Y.Z., Sun, C., Bao, Y. & Zhou, Q. 2018 How surface roughness reduces heat transport for small roughness heights in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 836, R2.CrossRefGoogle Scholar
Zhong, J.Q. & Zhang, J. 2005 Thermal convection with a freely moving top boundary. Phys. Fluids 17 (11), 115105.CrossRefGoogle Scholar
Zhong, J.Q. & Zhang, J. 2007 a Dynamical states of a mobile heat blanket on a thermally convecting fluid. Phys. Rev. E 75 (5), 055301.CrossRefGoogle ScholarPubMed
Zhong, J.Q. & Zhang, J. 2007 b Modeling the dynamics of a free boundary on turbulent thermal convection. Phys. Rev. E 76, 016307.CrossRefGoogle ScholarPubMed
Zhong, S. & Gurnis, M. 1993 Dynamic feedback between a continentlike raft and thermal convection. J. Geophys. Res.: Solid Earth 98 (B7), 1221912232.CrossRefGoogle Scholar
Zhu, X., Stevens, R.J.A.M., Verzicco, R. & Lohse, D. 2017 Roughness-facilitated local 1/2 scaling does not imply the onset of the ultimate regime of thermal convection. Phys. Rev. Lett. 119, 154501.CrossRefGoogle Scholar
Zhu, X., Verschoof, R.A., Bakhuis, D., Huisman, S.G., Verzicco, R., Sun, C. & Lohse, D. 2018 Wall roughness induces asymptotic ultimate turbulence. Nat. Phys. 14 (4), 417423.CrossRefGoogle Scholar
Supplementary material: File

Frick et al. supplementary movie 1

Streamlines of the velocity field and total kinetic energy of the fluid for Γ1 = 5.76, Γ2 = 2.35, Ra = 8.6 × 106 and d = 0.1.
Download Frick et al. supplementary movie 1(File)
File 48.8 MB
Supplementary material: File

Frick et al. supplementary movie 2

Streamlines of the velocity field and total kinetic energy of the fluid for Γ1 = 12.5, Γ2 = 5.1, Ra = 8.6 × 106 and d = 0.1.
Download Frick et al. supplementary movie 2(File)
File 49.8 MB