Skip to main content Accessibility help

Rayleigh–Bénard convection with a melting boundary

  • B. Favier (a1), J. Purseed (a1) and L. Duchemin (a1)


We study the evolution of a melting front between the solid and liquid phases of a pure incompressible material where fluid motions are driven by unstable temperature gradients. In a plane-layer geometry, this can be seen as classical Rayleigh–Bénard convection where the upper solid boundary is allowed to melt due to the heat flux brought by the fluid underneath. This free-boundary problem is studied numerically in two dimensions using a phase-field approach, classically used to study the melting and solidification of alloys, which we dynamically couple with the Navier–Stokes equations in the Boussinesq approximation. The advantage of this approach is that it requires only moderate modifications of classical numerical methods. We focus on the case where the solid is initially nearly isothermal, so that the evolution of the topography is related to the inhomogeneous heat flux from thermal convection, and does not depend on the conduction problem in the solid. From a very thin stable layer of fluid, convection cells appear as the depth – and therefore the effective Rayleigh number – of the layer increases. The continuous melting of the solid leads to dynamical transitions between different convection cell sizes and topography amplitudes. The Nusselt number can be larger than its value for a planar upper boundary, due to the feedback of the topography on the flow, which can stabilize large-scale laminar convection cells.


Corresponding author

Email address for correspondence:


Hide All
Alboussière, T., Deguen, R. & Melzani, M. 2010 Melting-induced stratification above the Earth’s inner core due to convective translation. Nature 466, 744747.
Almgren, R. F. 1999 Second-order phase field asymptotics for unequal conductivities. SIAM J. Appl. Maths 59 (6), 20862107.
Anderson, D. M., McFadden, G. B. & Wheeler, A. A. 2000 A phase-field model of solidification with convection. Physica D 135 (1), 175194.
Andersson, C.2002 Phase-field simulation of dendritic solidification. PhD thesis, Royal Institute of Technology KTH, Department of Numerical Analysis and Computer Science.
Angot, P., Bruneau, C.-H. & Fabrie, P. 1999 A penalization method to take into account obstacles in incompressible viscous flows. Numer. Math. 81 (4), 497520.
Beckermann, C., Diepers, H.-J., Steinbach, I., Karma, A. & Tong, X. 1999 Modeling melt convection in phase-field simulations of solidification. J. Comput. Phys. 154 (2), 468496.
Bhattacharjee, K. J. 1991 Parametric resonance in Rayleigh–Bénard convection with corrugated geometry. Phys. Rev. A 43, 819821.
Bodenschatz, E., Pesch, W. & Ahlers, G. 2000 Recent developments in Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 32 (1), 709778.
Boettinger, W. J., Warren, J. A., Beckermann, C. & Karma, A. 2002 Phase-field simulation of solidification. Annu. Rev. Mater. Res. 32 (1), 163194.
Busse, F. H. 1983 Generation of mean flows by thermal convection. Physica D 9 (3), 287299.
Caginalp, G. 1989 Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations. Phys. Rev. A 39, 58875896.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Dover.
Ciliberto, S. & Laroche, C. 1999 Random roughness of boundary increases the turbulent convection scaling exponent. Phys. Rev. Lett. 82, 39984001.
Claudin, P., Durán, O. & Andreotti, B. 2017 Dissolution instability and roughening transition. J. Fluid Mech. 832, R2.
Coullet, P. & Huerre, P. 1986 Resonance and phase solitons in spatially-forced thermal convection. Physica D 23 (1), 2744.
Couston, L.-A., Lecoanet, D., Favier, B. & Le Bars, M. 2017 Dynamics of mixed convective–stably-stratified fluids. Phys. Rev. Fluids 2, 094804.
Cross, M. C. & Hohenberg, P. C. 1993 Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 8511112.
Curry, J. H., Herring, J. R., Loncaric, J. & Orszag, S. A. 1984 Order and disorder in two- and three-dimensional Bénard convection. J. Fluid Mech. 147, 138.
Davaille, A. 1999 Two-layer thermal convection in miscible viscous fluids. J. Fluid Mech. 379, 223253.
Davis, S. H., Müller, U. & Dietsche, C. 1984 Pattern selection in single-component systems coupling Bénard convection and solidification. J. Fluid Mech. 144, 133151.
Du, Y.-B. & Tong, P. 2000 Turbulent thermal convection in a cell with ordered rough boundaries. J. Fluid Mech. 407, 5784.
Favier, B. & Bushby, P. J. 2012 Small-scale dynamo action in rotating compressible convection. J. Fluid. Mech. 690, 262287.
Favier, B., Silvers, L. J. & Proctor, M. R. E. 2014 Inverse cascade and symmetry breaking in rapidly rotating Boussinesq convection. Phys. Fluids 26 (9), 096605.
Fischer, P. F., Lottes, J. W. & Kerkemeier, S. G.2008 NEK5000 v17.0: open source spectral element CFD solver. Argonne National Laboratory, Illinois. Available at:
Fitzgerald, J. G. & Farrell, B. F. 2014 Mechanisms of mean flow formation and suppression in two-dimensional Rayleigh–Bénard convection. Phys. Fluids 26 (5), 054104.
Gastine, T., Wicht, J. & Aurnou, J. M. 2015 Turbulent Rayleigh–Bénard convection in spherical shells. J. Fluid Mech. 778, 721764.
Gibou, F., Chen, L., Nguyen, D. & Banerjee, S. 2007 A level set based sharp interface method for the multiphase incompressible Navier–Stokes equations with phase change. J. Comput. Phys. 222 (2), 536555.
Goldhirsch, I., Pelz, R. B. & Orszag, S. A. 1989 Numerical simulation of thermal convection in a two-dimensional finite box. J. Fluid Mech. 199, 128.
Gollub, J. P. & Benson, S. V. 1980 Many routes to turbulent convection. J. Fluid Mech. 100 (3), 449470.
Goluskin, D., Johnston, H., Flierl, G. R. & Spiegel, E. A. 2014 Convectively driven shear and decreased heat flux. J. Fluid Mech. 759, 360385.
Grannan, A. M., Favier, B., Le Bars, M. & Aurnou, J. M. 2017 Tidally forced turbulence in planetary interiors. Geophys. J. Intl 208 (3), 16901703.
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.
Jiaung, W.-S., Ho, J.-R. & Kuo, C.-P. 2001 Lattice Boltzmann method for the heat conduction problem with phase change. Numer. Heat Transfer 39 (2), 167187.
Karma, Alain & Rappel, Wouter-Jan 1996 Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. Phys. Rev. E 53, R3017R3020.
Keitzl, T., Mellado, J. P. & Notz, D. 2016 Impact of thermally driven turbulence on the bottom melting of ice. J. Phys. Oceanogr. 46 (4), 11711187.
Kelly, R. E. & Pal, D. 1978 Thermal convection with spatially periodic boundary conditions: resonant wavelength excitation. J. Fluid Mech. 86 (3), 433456.
Killworth, P. D. & Manins, P. C. 1980 A model of confined thermal convection driven by non-uniform heating from below. J. Fluid Mech. 98 (3), 587607.
Kogan, A. B., Murphy, D. & Meyer, H. 1999 Rayleigh–Bénard convection onset in a compressible fluid: 3He near T C . Phys. Rev. Lett. 82, 46354638.
Kolomenskiy, D. & Schneider, K. 2009 A fourier spectral method for the Navier–Stokes equations with volume penalization for moving solid obstacles. J. Comput. Phys. 228 (16), 56875709.
Kraichnan, R. H. 1962 Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5 (11), 13741389.
Labrosse, S., Morison, A., Deguen, R. & Alboussière, T. 2018 Rayleigh–Bénard convection in a creeping solid with melting and freezing at either or both its horizontal boundaries. J. Fluid Mech. 846, 536.
Le Bars, M. & Worster, M. G. 2006 Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification. J. Fluid Mech. 550, 149173.
Mackenzie, J. A. & Robertson, M. L. 2002 A moving mesh method for the solution of the one-dimensional phase-field equations. J. Comput. Phys. 181 (2), 526544.
Manneville, P. 2006 Rayleigh–Bénard Convection: Thirty Years of Experimental, Theoretical, and Modeling Work, pp. 4165. Springer.
Martin, S. & Kauffman, P. 1977 An experimental and theoretical study of the turbulent and laminar convection generated under a horizontal ice sheet floating on warm salty water. J. Phys. Oceanogr. 7 (2), 272283.
Matthews, P. C., Proctor, M. R. E. & Weiss, N. O. 1995 Compressible magnetoconvection in three dimensions: planforms and nonlinear behaviour. J. Fluid Mech. 305, 281305.
Meakin, P. & Jamtveit, B. 2010 Geological pattern formation by growth and dissolution in aqueous systems. Proc R. Soc. Lond. A 466 (2115), 659694.
Mittal, R. & Iaccarino, G. 2005 Immersed boundary methods. Annu. Rev. Fluid Mech. 37 (1), 239261.
Moore, D. R. & Weiss, N. O. 1973 Nonlinear penetrative convection. J. Fluid Mech. 61 (3), 553581.
Moore, M. N. J., Ristroph, L., Childress, S., Zhang, J. & Shelley, M. J. 2013 Self-similar evolution of a body eroding in a fluid flow. Phys. Fluids 25 (11), 116602.
Penrose, O. & Fife, P. C. 1990 Thermodynamically consistent models of phase-field type for the kinetic of phase transitions. Physica D 43 (1), 4462.
Prat, J., Massaguer, J. M. & Mercader, I. 1995 Large scale flows and resonances in 2D thermal convection. Phys. Fluids 7 (1), 121134.
Rabbanipour Esfahani, B., Hirata, S. C., Berti, S. & Calzavarini, E. 2018 Basal melting driven by turbulent thermal convection. Phys. Rev. Fluids 3, 053501.
Ristroph, L. 2018 Sculpting with flow. J. Fluid Mech. 838, 14.
Roberts, P. H. 2015 Theory of the geodynamo. In Treatise on Geophysics, 2nd edn (ed. Schubert, G.), pp. 5790. Elsevier.
Roche, P.-E., Gauthier, F., Kaiser, R. & Salort, J. 2010 On the triggering of the ultimate regime of convection. New J. Phys. 12 (8), 085014.
Roppo, M. N., Davis, S. H. & Rosenblat, S. 1984 Bénard convection with time periodic heating. Phys. Fluids 27 (4), 796803.
Rossby, H. T. 1965 On thermal convection driven by non-uniform heating from below: an experimental study. Deep Sea Res. 12 (1), 916.
Rusaouën, E., Liot, O., Castaing, B., Salort, J. & Chillà, F. 2018 Thermal transfer in Rayleigh–Bénard cell with smooth or rough boundaries. J. Fluid Mech. 837, 443460.
Singh, J., Bajaj, R. & Kaur, P. 2015 Bicritical states in temperature-modulated Rayleigh–Bénard convection. Phys. Rev. E 92, 013005.
Sondak, D., Smith, L. M. & Waleffe, F. 2015 Optimal heat transport solutions for Rayleigh–Bénard convection. J. Fluid Mech. 784, 565595.
Stevens, B. 2005 Atmospheric moist convection. Annu. Rev. Earth Planet. Sci. 33 (1), 605643.
Tackley, P. J. 1996 Effects of strongly variable viscosity on three-dimensional compressible convection in planetary mantles. J. Geophys. Res. 101 (B2), 33113332.
Toppaladoddi, S., Succi, S. & Wettlaufer, J. S. 2015 Tailoring boundary geometry to optimize heat transport in turbulent convection. Europhys. Lett. 111 (4), 44005.
Ulvrová, M., Labrosse, S., Coltice, N., Råback, P. & Tackley, P. J. 2012 Numerical modelling of convection interacting with a melting and solidification front: application to the thermal evolution of the basal magma ocean. Phys. Earth Planet. Inter. 206–207, 5166.
Vasil, G. M. & Proctor, M. R. E. 2011 Dynamic bifurcations and pattern formation in melting-boundary convection. J. Fluid Mech. 686, 77108.
Venezian, G. 1969 Effect of modulation on the onset of thermal convection. J. Fluid Mech. 35 (2), 243254.
Verhoeven, J., Wiesehöfer, T. & Stellmach, S. 2015 Anelastic versus fully compressible turbulent Rayleigh–Bénard convection. Astrophys. J. 805 (1), 62.
Voller, V. R., Swaminathan, C. R. & Thomas, B. G. 1990 Fixed grid techniques for phase change problems: a review. Intl J. Numer. Meth. Engng 30 (4), 875898.
Walton, I. C. 1982 On the onset of Rayleigh–Bénard convection in a fluid layer of slowly increasing depth. Stud. Appl. Maths 67 (3), 199216.
Wang, S.-L., Sekerka, R. F., Wheeler, A. A., Murray, B. T., Coriell, S. R., Braun, R. J. & McFadden, G. B. 1993 Thermodynamically-consistent phase-field models for solidification. Physica D 69 (1), 189200.
Weiss, S., Seiden, G. & Bodenschatz, E. 2014 Resonance patterns in spatially forced Rayleigh–Bénard convection. J. Fluid Mech. 756, 293308.
Woods, A. W. 1992 Melting and dissolving. J. Fluid Mech. 239, 429448.
Worster, M. G. 2000 Solidification of fluids. In Perspectives in Fluid Dynamics: A Collective Introduction to Current Research (ed. Batchelor, G. K., Moffatt, H. K. & Worster, M. G.), Cambridge University Press.
Zhang, Y.-Z., Sun, C., Bao, Y. & Zhou, Q. 2018 How surface roughness reduces heat transport for small roughness heights in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 836, R2.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Rayleigh–Bénard convection with a melting boundary

  • B. Favier (a1), J. Purseed (a1) and L. Duchemin (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.