Skip to main content Accessibility help
×
Home

Quasi-geostrophic approximation of anelastic convection

  • Friedrich H. Busse (a1) (a2) and Radostin D. Simitev (a3) (a2) (a4)

Abstract

The onset of convection in a rotating cylindrical annulus with parallel ends filled with a compressible fluid is studied in the anelastic approximation. Thermal Rossby waves propagating in the azimuthal direction are found as solutions. The analogy to the case of Boussinesq convection in the presence of conical end surfaces of the annular region is emphasised. As in the latter case, the results can be applied as an approximation for the description of the onset of anelastic convection in rotating spherical fluid shells. Reasonable agreement with three-dimensional numerical results published by Jones, Kuzanyan & Mitchell (J. Fluid Mech., vol. 634, 2009, pp. 291–319) for the latter problem is found. As in those results, the location of the onset of convection shifts outwards from the tangent cylinder with increasing number $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}N_{\rho }$ of density scale heights until it reaches the equatorial boundary. A new result is that at a much higher number $N_{\rho }$ the onset location returns to the interior of the fluid shell.

Copyright

Corresponding author

Email address for correspondence: busse@uni-bayreuth.de

References

Hide All
Braginsky, S. I. & Roberts, P. H. 1995 Equations governing convection in Earth’s core and the geodynamo. Geophys. Astrophys. Fluid Dyn. 79, 197.
Busse, F. H. 1970 Thermal instabilities in rapidly rotating cylindrical annulus. J. Fluid Mech. 44, 441460.
Busse, F. H. 1983 A model of mean zonal flows in the major planets. Geophys. Astrophys. Fluid Dyn. 23, 153174.
Busse, F. H. 1986 Asymptotic theory of convection in a rotating, cylindrical annulus. J. Fluid Mech. 173, 545556.
Busse, F. H. 2002 Convective flows in rapidly rotating spheres and their dynamo action. Phys. Fluids 14, 13011314.
Busse, F. H. & Or, A. C. 1986 Convection in a rotating cylindrical annulus: thermal Rossby waves. J. Fluid Mech. 166, 173187.
Calkins, M., Julien, K. & Marti, P. 2013 Three-dimensional quasi-geostrophic convection in the rotating cylindrical annulus with steeply sloping endwalls. J. Fluid Mech. 732, 214244.
Evonuk, M. & Glatzmaier, G. A. 2004 2D studies of various approximations used for modeling convection in giant planets. Geophys. Astrophys. Fluid Dyn. 98, 241255.
Evonuk, M. & Glatzmaier, G. A. 2006 A 2D study of the effects of the size of a solid core on the equatorial flow in giant planets. Icarus 181, 458464.
Gastine, T. & Wicht, J. 2012 Effects of compressibility on driving zonal flows in gas giants. Icarus 219, 428442.
Gillet, N. & Jones, C. A. 2006 The quasi-geostrophic model for rapidly rotating spherical convection outside the tangent cylinder. J. Fluid Mech. 554, 343369.
Glatzmaier, G. A., Evonuk, M. & Rogers, T. M. 2009 Differential rotation in giant planets maintained by density-stratified turbulent convection. Geophys. Astrophys. Fluid Dyn. 103, 3151.
Gough, D. O. 1969 The anelastic approximation for thermal convection. J. Atmos. Sci. 26, 448456.
Jones, C. A., Boronski, P., Brun, A. S., Glatzmaier, G. A., Gastine, T., Miesch, M. S. & Wicht, J. 2011 Anelastic convection-driven dynamo benchmarks. Icarus 216, 120135.
Jones, C. A., Kuzanyan, K. M. & Mitchell, R. H. 2009 Linear theory of compressible convection in rapidly rotating spherical shells, using the anelastic approximation. J. Fluid Mech. 634, 291319.
Lantz, S. R. & Fan, Y. 1999 Anelastic magnetohydrodynamic equations for modeling solar and stellar convection zones. Astrophys. J. Suppl. 121, 247264.
Simitev, R. D. & Busse, F. H. 2003 Patterns of convection in rotating spherical shells. New J. Phys. 5, 97.197.20.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Quasi-geostrophic approximation of anelastic convection

  • Friedrich H. Busse (a1) (a2) and Radostin D. Simitev (a3) (a2) (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed