Skip to main content Accessibility help
×
Home

Pulse dynamics in a power-law falling film

  • M. Pradas (a1), D. Tseluiko (a2), C. Ruyer-Quil (a3) (a4) and S. Kalliadasis (a1)

Abstract

We examine the stability, dynamics and interactions of solitary waves in a two-dimensional vertically falling thin liquid film that exhibits shear-thinning effects. We use a low-dimensional two-field model that describes the evolution of both the local flow rate and the film thickness and is consistent up to second-order terms in the long-wave expansion. The shear-thinning behaviour is modelled via a power-law formulation with a Newtonian plateau in the limit of small strain rates. Our results show the emergence of a hysteresis behaviour as the control parameter (the Reynolds number) is increased which is directly related to the shear-thinning character of the liquid and can be quantified with both linear analysis arguments and a physical interpretation. We also study pulse interactions, observing that two pulses may attract or repel each other either monotonically or in an oscillatory manner. In large domains we find that for a given Reynolds number the final state depends on the initial condition, a consequence of the presence of multiple solutions.

Copyright

Corresponding author

Email address for correspondence: s.kalliadasis@imperial.ac.uk

References

Hide All
Allgower, E. L. & Georg, K. 1987 Introduction to Numerical Continuation Methods. SIAM.
Amaouche, M., Djema, A. & Bourdache, L. 2009 A modified Shkadov’s model for thin film flow of a power law fluid over an inclined surface. C. R. Méc. 337, 4852.
Balmforth, N. J. 1995 Solitary waves and homoclinic orbits. Annu. Rev. Fluid Mech. 27, 335373.
Balmforth, N. J. & Craster, R. V. 1999 A consistent thin-layer theory for Bingham plastics. J. Non-Newtonian Fluid Mech. 6581.
Balmforth, N. J. & Liu, J. J. 2004 Roll waves in mud. J. Fluid Mech. 519, 3354.
Benney, D. J. 1966 Long waves on liquid films. J. Math. Phys. 45, 150155.
Bewersdorff, H.-W. & Singh, R. 1988 Rheological and drag reduction characteristics of xanthan gum solutions. Rheol. Acta 27, 617627.
Chang, H.-C. 1994 Wave evolution on a falling film. Annu. Rev. Fluid Mech. 26, 103136.
Chang, H.-C. & Demekhin, E. 2002 Complex Wave Dynamics on Thin Films. Elsevier.
Chang, H.-C., Demekhin, E. & Kalaidin, E. 1995 Interaction dynamics of solitary waves on a falling film. J. Fluid Mech. 294, 123154.
Demekhin, E. A., Kalaidin, E. N., Kalliadasis, S. & Vlaskin, S. Yu. 2007 Three-dimensional localized coherent structures of surface turbulence. I. Scenarios of two-dimensional–three-dimensional transition. Phys. Fluids 19, 114103.
Denier, J. P. & Dabrowski, P. P. 2004 On the boundary-layer equations for power-law fluids. Proc. R. Soc. Lond. A 460, 3143.
Duprat, C., Giorgiutti-Dauphiné, F., Tseluiko, D., Saprykin, S. & Kalliadasis, S. 2009 Liquid film coating a fiber as a model system for the formation of bound states in active dispersive–dissipative nonlinear media. Phys. Rev. Lett. 103, 234501.
Duprat, C., Ruyer-Quil, C., Kalliadasis, S. & Giorgiutti-Dauphiné, F. 2007 Absolute and convective instabilities of a viscous film flowing down a vertical fiber. Phys. Rev. Lett. 98, 244502.
Duprat, C., Tseluiko, D., Saprykin, S., Kalliadasis, S. & Giorgiutti-Dauphiné, F. 2011 Wave interactions on a viscous film coating a vertical fibre: Formation of bound states. Chem. Eng. Process. 50, 519524.
Elphick, C., Ierley, G. R., Regev, O. & Spiegel, E. A. 1991 Interacting localized structures with galilean invariance. Phys. Rev. A 44, 11101122.
Fernández-Nieto, E. D., Noble, P. & Vila, J.-P. 2010 Shallow water equations for non-Newtonian fluids. J. Non-Newtonian Fluid Mech. 165, 712732.
Hulme, G. 1974 The interpretation of lava flow morphology. Geophys. J. R. Astron. Soc. 39, 361383.
Kalliadasis, S., Ruyer-Quil, C., Scheid, B. & Velarde, M. G. 2012 Falling Liquid Films. (Springer Series on Applied Mathematical Sciences) , vol. 176. Springer.
Kapitza, P. L. 1948a Wave flow of thin layers of a viscous fluid: I. Free flow. Zh. Eksp. Teor. Fiz. 18, 318.
Kapitza, P. L. 1948b Wave flow of thin layers of a viscous fluid: II. Fluid flow in the presence of continuous gas flow and heat transfer. Zh. Eksp. Teor. Fiz. 18, 1928.
Krauskopf, B., Osinga, H. M. & Galán-Vioque, J.(Eds.) 2007 Numerical Continuation Methods for Dynamical Systems. Springer.
Liu, J., Paul, J. D. & Gollub, J. P. 1993 Measurements of the primary instabilities of film flows. J. Fluid Mech. 250, 69101.
Malamataris, N. A., Vlachogiannis, M. & Bontozoglou, V. 2002 Solitary waves on inclined films: Flow structure and binary interactions. Phys. Fluids 14, 10821095.
Pego, R. L. & Weinstein, M. I. 1994 Asymptotic stability of solitary waves. Commun. Math. Phys. 164, 305349.
Pradas, M., Kalliadasis, S., Nguyen, P.-K. & Bontozoglou, V. 2013 Bound-state formation in interfacial turbulence: direct numerical simulations and theory. J. Fluid Mech. 716, R2.
Pradas, M., Tseluiko, D. & Kalliadasis, S. 2011 Rigorous coherent-structure theory for falling liquid films: Viscous dispersion effects on bound-state formation and self-organization. Phys. Fluids 23, 044104.
Pradas, M., Kalliadasis, S. & Tseluiko, D. 2012 Binary interactions of solitary pulses in falling liquid films. IMA J. Appl. Maths 77, 408419.
Rizwan-Sadiq, I. M. & Usha, R. 2010 Effect of permeability on the instability of a non-Newtonian film down a porous inclined plane. J. Non-Newtonian Fluid Mech. 165, 11711188.
Rousset, F., Millet, S., Botton, V. & Benhadid, H. 2007 Temporal stability of Carreau fluid flow down an incline. J. Fluids Eng. 129, 913920.
Ruyer-Quil, C., Chakraborty, S. & Dandapat, B. S. 2012 Wavy regime of a power-law film flow. J. Fluid Mech. 692, 220256.
Ruyer-Quil, C. & Manneville, P. 2000 Improved modeling of flows down inclined planes. Eur. Phys. J. B 15, 357369.
Sandstede, B. & Scheel, A. 2000 Absolute and convective instabilities of waves on unbounded and large bounded domains. Physica D 145, 233277.
Savva, N. & Pavliotis, G. A. 2010 Two-dimensional droplet spreading over random topographical substrates. Phys. Rev. Lett. 104, 084501.
Scheid, B., Ruyer-Quil, C. & Manneville, P. 2006 Wave patterns in film flows: modelling and three-dimensional waves. J. Fluid Mech. 562, 183222.
Sisoev, G. M., Dandapat, B. S., Matveyev, K. S. & Mukhopadhyay, A. 2007 Bifurcation analysis of the travelling waves on a falling power-law fluid film. J. Non-Newtonian Fluid Mech. 141, 128137.
Sisoev, G. M. & Usha, R. 2009 Wave regimes on power-law fluid film flowing down a porous plane. Intl J. Non-Linear Mech. 45, 236241.
Tseluiko, D. & Kalliadasis, S. 2014 Weak interaction of solitary pulses in active dispersive–dissipative nonlinear media. IMA J. Appl. Maths 79, 274299.
Tseluiko, D., Saprykin, S., Duprat, C., Giorgiutti-Dauphiné, F. & Kalliadasis, S. 2010a Pulse dynamics in low-Reynolds-number interfacial hydrodynamics: Experiments and theory. Physica D 239, 20002010.
Tseluiko, D., Saprykin, S. & Kalliadasis, S. 2010b Interaction of solitary pulses in active dispersive–dissipative media. Proc. Est. Acad. Sci. 59, 139144.
Usha, R., Millet, S., Benhadid, H. & Rousset, F. 2011 Shear-thinning film on a porous substrate: Stability analysis of a one-sided model. Chem. Eng. Sci. 66, 56145627.
Vlachogiannis, M. & Bontozoglou, V. 2001 Observations of solitary wave dynamics of film flows. J. Fluid Mech. 435, 191215.
Vlachogiannis, M., Samandas, A., Leontidis, V. & Bontozoglou, V. 2010 Effect of channel width on the primary instability of inclined film flow. Phys. Fluids 22, 012106.
Weinstein, S. J. 1990 Wave propagation in the flow of shear-thinning fluids down an incline. AIChE J. 36, 18731889.
Yeong, K. K., Gavriilidis, A., Zapf, R. & Hessel, V. 2004 Experimental studies of nitrobenzene hydrogenation in a microstructured falling film reactor. Chem. Eng. Sci. 59, 34913494.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed