Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T06:15:59.365Z Has data issue: false hasContentIssue false

Polymer-laden homogeneous shear-driven turbulent flow: a model for polymer drag reduction

Published online by Cambridge University Press:  28 June 2010

ASHISH ROBERT
Affiliation:
Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 205 Reber Building, University Park, PA 16802, USA
T. VAITHIANATHAN
Affiliation:
Sibley School of Mechanical and Aerospace Engineering, Cornell University, 105 Upson Hall, Ithaca, NY 14853, USA
LANCE R. COLLINS
Affiliation:
Sibley School of Mechanical and Aerospace Engineering, Cornell University, 105 Upson Hall, Ithaca, NY 14853, USA
JAMES G. BRASSEUR*
Affiliation:
Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 205 Reber Building, University Park, PA 16802, USA
*
Email address for correspondence: brasseur@psu.edu

Abstract

Drag reduction (DR) under a turbulent boundary layer implies the suppression of turbulent momentum flux to the wall, a large-eddy phenomenon. Our hypothesis is that the essential mechanisms by which dilute concentrations of long-chain polymer molecules reduce momentum flux involve only the interactions among turbulent velocity fluctuations, polymer molecules and mean shear. Experiments indicate that these interactions dominate in a polymer-active ‘elastic layer’ outside the viscous sublayer and below a Newtonian inertial layer in a polymer-laden turbulent boundary layer. We investigate our hypothesis by modelling the suppression of momentum flux with direct numerical simulation (DNS) of homogeneous turbulent shear flow (HTSF) and the finite extensible nonlinear elastic with Peterlin approximation (FENE-P) model for polymer stress. The polymer conformation tensor equation was solved using a new hyperbolic algorithm with no artificial diffusion. We report here on the equilibrium state with fixed mean shear rate S, where progressive increases in non-dimensional polymer relaxation time WeS (shear Weissenberg number) or concentration parameter 1 − β produced progressive reductions in Reynolds shear stress, turbulence kinetic energy and turbulence dissipation rate, concurrent with increasing polymer stress and elastic potential energy. The changes in statistical variables underlying polymer DR with 1 − β, WeS, %DR and polymer-induced changes to spectra are similar to experiments in channel and pipe flows and show that the experimentally measured increase in normalized streamwise velocity variance is an indirect consequence of DR that is true only at lower DR. Comparison of polymer stretch and elastic potential energy budgets with channel flow DNS showed qualitative correspondence when distance from the wall was correlated to WeS. As WeS increased, the homogeneous shear flow displayed low-DR, high-DR and maximum-DR (MDR) regimes, similar to experiments, with each regime displaying distinctly different polymer–turbulence physics. The suppression of turbulent momentum flux arises from the suppression of vertical velocity fluctuations primarily by polymer-induced suppression of slow pressure–strain rate correlations. In the high-Weissenberg-number MDR-like limit, the polymer nearly completely blocks Newtonian inter-component energy transfer to vertical velocity fluctuations and turbulence is maintained by the polymer contribution to pressure–strain rate. Our analysis from HTSF with the FENE-P representation of polymer stress and its comparisons with experimental and DNS studies of wall-bounded polymer–turbulence supports our central hypothesis that the essential mechanisms underlying polymer DR lie directly in the suppression of momentum flux by polymer–turbulence interactions in the presence of mean shear and indirectly in the presence of the wall as the shear-generating mechanism.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Clear Science Corporation, 663 Owego Hill Road, Harford, NY 13784-0233, USA.

References

REFERENCES

de Angelis, E., Casciola, C. M., Benzi, R. & Piva, R. 2005 Homogeneous isotropic turbulence in dilute polymers. J. Fluid Mech. 531, 110.CrossRefGoogle Scholar
Bird, R. B., Curtiss, C. F., Armstrong, R. C. & Hassager, O. 1987 Dynamics of Polymeric Liquids, 2nd edn, vol. 2. John Wiley.Google Scholar
Brasseur, J. G. & Lin, W. 2005 Kinematics and dynamics of small-scale vorticity and strain-rate structures in the transition from isotropic to shear turbulence. Fluid Dyn. Res. 36, 357384.CrossRefGoogle Scholar
Casciola, C. M., Gualtieri, P., Jacob, B. & Piva, R. 2005 Scaling properties in the production range of shear dominated flows. Phys. Rev. Lett. 95, 024503.CrossRefGoogle ScholarPubMed
Dimitropoulos, C. D., Dubief, Y., Shaqfeh, E. S. G., Moin, P. & Lele, S. K. 2005 Direct numerical simulation of polymer-induced drag reduction in turbulent boundary layer flow. Phys. Fluids 17, 011705.CrossRefGoogle Scholar
Dimitropoulos, C. D., Sureshkumar, R. & Beris, A. N. 1998 Direct numerical simulation of turbulent channel flow exhibiting drag reduction: effect of the variation of rheological parameters. J. Non-Newton. Fluid Mech. 79, 433468.CrossRefGoogle Scholar
Dimitropoulos, C. D., Sureshkumar, R., Beris, A. N. & Handler, R. A. 2001 Budgets of Reynolds stress, kinetic energy and streamwise enstrophy in viscoelastic turbulent channel flow. Phys. Fluids 13, 10161027.CrossRefGoogle Scholar
Dubief, Y., White, C. M., Terrapon, V. E., Shaqfeh, E. S. G., Moin, P. & Lele, S. K. 2004 On the coherent drag-reducing and turbulent-enhancing behaviour of polymers in wall flows. J. Fluid Mech. 514, 271280.CrossRefGoogle Scholar
Dupret, F. & Marchal, J. M. 1986 Loss of evolution in the flow of viscoelastic fluid. J. Non-Newton. Fluid Mech. 20, 143171.CrossRefGoogle Scholar
de Gennes, P. G. 1990 Introduction to Polymer Dynamics. Cambridge University Press.CrossRefGoogle Scholar
George, W. K., Beuther, P. D. & Arndt, R. E. A. 1984 Pressure spectra in turbulent free shear flows. J. Fluid Mech. 148, 155191.CrossRefGoogle Scholar
Gyr, A. & Bewersdorff, H.-W. 1995 Drag Reduction of Turbulent Flows by Additives, 1st edn. Kluwer.CrossRefGoogle Scholar
Harder, K. J. & Tiederman, W. G. 1991 Drag reduction and turbulent structure in two-dimensional channel flows. Phil. Trans. R. Soc. Lond. 336, 1934.Google Scholar
Housiadas, K. D. & Beris, A. N. 2003 Polymer-induced drag reduction: effects of the variations in elasticity and inertia in turbulent viscoelastic channel flow. Phys. Fluids 15, 23692384.CrossRefGoogle Scholar
Housiadas, K. D. & Beris, A. N. 2005 Direct numerical simulations of viscoelastic turbulent channel flows at high drag reduction. Korean–Aust. J. Rheol. 17, 131140.Google Scholar
Hoyt, J. W. 1971 Effect of additives on fluid friction. Trans. ASME J. Basic Engng 94, 258285.CrossRefGoogle Scholar
Ilg, P., de Angelis, E., Karlin, I. V., Casciola, C. M. & Succi, S. 2002 Polymer dynamics in wall turbulent flow. Europhys. Lett. 58, 616622.CrossRefGoogle Scholar
Jin, S. & Collins, L. R. 2007 Dynamics of dissolved polymer chains in isotropic turbulence. New J. Phys. 9, 360.CrossRefGoogle Scholar
Keunings, R. 1997 On the Peterlin approximation for finitely extensible dumbbells. J. Non-Newton. Fluid Mech. 68, 85100.CrossRefGoogle Scholar
Khanna, S. 1995 Structure of the atmospheric boundary layer from large eddy simulations. PhD thesis, Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA.Google Scholar
Kim, J. & Lee, M. J. 1989 The structure of pressure fluctuations in turbulent shear flows. In Seventh Symposium on Turbulent Shear Flows, Stanford University, CA (ed. Durst, F., Launder, B. E., Schmidt, F. W. & Whitlaw, J. H.), pp. 1.1.11.1.6. Standford University.Google Scholar
Kim, J. & Moin, P. 1986 The structure of the vorticity field in turbulent channel flow. Part 2. Study of ensemble-averaged fields. J. Fluid Mech. 162, 339363.CrossRefGoogle Scholar
Kurganov, A. & Tadmor, E. 2000 New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations. J. Comput. Phys. 160, 241282.CrossRefGoogle Scholar
Landahl, M. T. 1973 Drag reduction by polymer addition. In Proceedings of the 13th International Congress on Theoretical and Applied Mechanics, Moscow, Russia (ed. Becker, E. & Mikhailov, G. K.), pp. 177179. Springer.Google Scholar
Larson, R. G. 1999 The Structure and Rheology of Complex Fluids, 1st edn. Oxford University Press.Google Scholar
Lee, M. J. 1985 Numerical experiments on the structure of homogeneous turbulence. PhD thesis 24, Department of Mechanical Engineering, Stanford University, Stanford, CA.Google Scholar
Lee, M. J., Kim, J. & Moin, P. 1990 Structure of turbulence at high shear rate. J. Fluid Mech. 216, 561583.CrossRefGoogle Scholar
Liaw, G. C., Zakin, J. L. & Patterson, G. K. 1971 Effects of molecular characteristics of polymers on drag reduction. AIChE J. 17, 391397.CrossRefGoogle Scholar
Lo, T. S., L'vov, V. S., Pomyalov, A. & Procaccia, I. 2005 Estimating von Kármán's constant from homogeneous turbulence. Europhys. Lett. 72 (6), 943949.CrossRefGoogle Scholar
Lumley, J. L. 1969 Drag reduction by additives. Annu. Rev. Fluid Mech. 1, 367384.CrossRefGoogle Scholar
Lumley, J. L. 1973 Drag reduction in turbulent flow by polymer additives. J. Polym. Sci., Macromol. Rev. 7, 263290.CrossRefGoogle Scholar
L'vov, V. S., Pomyalov, A., Procaccia, I. & Tiberkevich, A. 2004 Drag reduction by polymers in wall bounded turbulence. Phys. Rev. Lett. 92, 244503-1–244503-4.Google ScholarPubMed
McComb, W. 1990 The Physics of Fluid Turbulence, 1st edn. Oxford University Press.CrossRefGoogle Scholar
McComb, W. D. & Rabie, L. H. 1979 Development of local turbulent drag reduction due to nonuniform polymer concentration. Phys. Fluids 22, 183185.CrossRefGoogle Scholar
McComb, W. D. & Rabie, L. H. 1982 Local drag reduction due to injection of polymer solutions into turbulent flow in a pipe. AIChE J. 28, 547557.CrossRefGoogle Scholar
Min, T., Yoo, J. Y. & Choi, H. 2003 a Maximum drag reduction in a turbulent channel flow by polymer additives. J. Fluid Mech. 492, 91100.CrossRefGoogle Scholar
Min, T., Yoo, J. Y., Choi, H. & Joseph, D. D. 2003 b Drag reduction by polymer additives in a turbulent channel flow. J. Fluid Mech. 486, 213238.CrossRefGoogle Scholar
Nieuwstadt, F. T. M. & den Toonder, J. M. J. 2001 Drag reduction by polymer additives: a review. In Turbulence Structure and Motion (ed. Sooldati, A. & Monti, R.), pp. 269316. Springer.CrossRefGoogle Scholar
Peterlin, A. 1966 Turbulent structure in low-concentration drag-reducing channel flows. J. Polym. Sci. B, Polym. Lett. 4, 287291.CrossRefGoogle Scholar
Pinho, F. T. & Whitelaw, J. H. 1990 Flow of non-Newtonian fluids in a pipe. J. Non-Newton. Fluid Mech. 34, 129144.CrossRefGoogle Scholar
Ptasinski, P. K., Boersma, B. J., Nieuwstadt, F. T. M., Hulsen, M. A., van den Brule, B. H. A. A. & Hunt, J. C. R. 2003 Turbulent channel flow near maximum drag reduction: simulations, experiments and mechanisms. J. Fluid Mech. 490, 251291.CrossRefGoogle Scholar
Ptasinski, P. K., Nieuwstadt, F. T. M., van den Brule, B. H. A. A. & Hulsen, M. A. 2001 Experiments in turbulent pipe flow with polymer additives at maximum drag reduction. Flow, Turbulence Combust. 66, 159182.CrossRefGoogle Scholar
Rogallo, R. S. 1981 Numerical experiments in homogeneous turbulence. Tech. Rep. TM 81315. NASA.Google Scholar
Rogers, M. M. & Moin, P. 1987 The structure of the vorticity field in homogeneous turbulent shear flow. J. Fluid Mech. 176, 3366.CrossRefGoogle Scholar
Spangler, J. G. 1969 Studies of viscous drag reduction with polymers including turbulence measurements and roughness effects. In Viscous Drag Reduction (ed. Wells, C. S.), pp. 131155. Plenum.CrossRefGoogle Scholar
Sureshkumar, R. & Beris, A. N. 1995 Effect of artificial stress diffusivity on the stability of numerical calculations and the flow dynamics of time-dependent viscoelastic flows. J. Non-Newton. Fluid Mech. 60, 5380.CrossRefGoogle Scholar
Sureshkumar, R. & Beris, A. N. 1997 Simulation of time-dependent viscoelastic channel Poiseuille flow at high Reynolds numbers. Chem. Engng Sci. 51, 14511471.Google Scholar
Sureshkumar, R., Beris, A. N. & Handler, R. A. 1997 Direct numerical simulation of turbulent flow of a polymer solution. Phys. Fluids 9, 743755.CrossRefGoogle Scholar
Tabor, M. & de Gennes, P. G. 1986 A cascade theory of drag reduction. Europhys. Lett. 2, 519522.CrossRefGoogle Scholar
Toms, B. A. 1949 Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. In Proceedings of the 1st International Congress on Rheology, vol. 2, pp. 135141, North Holland, Amsterdam.Google Scholar
den Toonder, J. M. J., Hulsen, M. A., Kuiken, G. D. C. & Nieuwstadt, F. T. M. 1997 Drag reduction by polymer additives in a turbulent pipe flow: numerical and laboratory experiments. J. Fluid Mech. 337, 193231.CrossRefGoogle Scholar
Vaithianathan, T. & Collins, L. R. 2003 Numerical approach to simulating turbulent flow of a viscoelastic polymer solution. J. Comput. Phys. 187, 121.CrossRefGoogle Scholar
Vaithianathan, T., Robert, A., Brasseur, J. G. & Collins, L. R. 2006 An improved algorithm for simulating three-dimensional, viscoelastic turbulence. J. Non-Newton. Fluid Mech. 140, 322.CrossRefGoogle Scholar
Vaithianathan, T., Robert, A., Brasseur, J. G. & Collins, L. R. 2007 Polymer mixing in shear-driven turbulence. J. Fluid Mech. 585, 487497.CrossRefGoogle Scholar
Virk, P. S. 1971 a Drag reduction in rough pipes. J. Fluid Mech. 45, 225246.CrossRefGoogle Scholar
Virk, P. S. 1971 b An elastic sublayer model for drag reduction by dilute solutions of linear macromolecules. J. Fluid Mech. 45, 417440.CrossRefGoogle Scholar
Virk, P. S. 1975 Drag reduction fundamentals. AIChE J. 21, 625656.CrossRefGoogle Scholar
Walker, D. T. & Tiederman, W. G. 1990 Turbulent structure in a channel flow with polymer injection at the wall. J. Fluid Mech. 218, 377403.CrossRefGoogle Scholar
Warholic, M. D., Massah, H. & Hanratty, T. J. 1999 Influence of drag-reducing polymers on turbulence: effects of Reynolds number, concentration and mixing. Exp. Fluids 27, 461472.CrossRefGoogle Scholar
Warner, H. R. 1972 Kinetic theory and rheology of dilute suspensions of finitely extensible dumbbell. Ind. Engng Chem. Fundam. 11, 379387.CrossRefGoogle Scholar
Wei, T. & Willamarth, W. W. 1992 Modifying turbulent structure with drag-reducing polymer additives in turbulent channel flows. J. Non-Newton. Fluid Mech. 245, 619641.CrossRefGoogle Scholar
White, C. M. & Mungal, M. G. 2008 Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech. 40, 235256.CrossRefGoogle Scholar
Willamarth, W. W., Wei, T. & Lee, C. 1987 Laser anemometer measurement of Reynolds stress in a turbulent channel flow with drag reducing polymer additives. Phys. Fluids 30, 933935.CrossRefGoogle Scholar
Wu, J. 1969 Drag reduction in external flows of additive solution. In Viscous Drag Reduction (ed. Wells, C. S.), pp. 331350. Plenum.CrossRefGoogle Scholar
Wu, J. & Tulin, M. 1972 Drag reduction by ejecting additive into pure-water boundary layer. Trans. ASME J. Basic Engng 94, 749756.CrossRefGoogle Scholar