Skip to main content Accessibility help
×
Home

Plume or bubble? Mixed-convection flow regimes and city-scale circulations

  • Hamidreza Omidvar (a1), Elie Bou-Zeid (a1), Qi Li (a2), Juan-Pedro Mellado (a3) and Petra Klein (a4)...

Abstract

Large-scale circulations around a city are co-modulated by the urban heat island and by regional wind patterns. Depending on these variables, the circulations fall into different regimes ranging from advection-dominated (plume regime) to convection-driven (bubble regime). Using dimensional analysis and large-eddy simulations, this study investigates how these different circulations scale with urban and rural heat fluxes, as well as upstream wind speed. Two dimensionless parameters are shown to control the dynamics of the flow: (1) the ratio of rural to urban thermal convective velocities that contrasts their respective buoyancy fluxes and (2) the ratio of bulk inflow velocity to the convection velocity in the rural area. Finally, the vertical flow velocities transecting the rural to urban transitions are used to develop a criterion for categorizing different large-scale circulations into plume, bubble or transitional regimes. The findings have implications for city ventilation since bubble regimes are expected to trap pollutants, as well as for scaling analysis in canonical mixed-convection flows.

Copyright

Corresponding author

Email address for correspondence: ebouzeid@princeton.edu

References

Hide All
Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Modern Phys. 81 (2), 503537.
Bejan, A. 1993 Heat Transfer. John Wiley & Sons.
Bergman, T. L., Incropera, F. P., DeWitt, D. P. & Lavine, A. S. 2011 Fundamentals of Heat and Mass transfer. John Wiley & Sons.
Bou-Zeid, E., Meneveau, C. & Parlange, M. 2005 A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys. Fluids 17 (2), 118.
Bou-Zeid, E., Meneveau, C. & Parlange, M. B. 2004 Large-eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces: blending height and effective surface roughness. Water Resour. Res. 40 (2), W02505.
Bou-Zeid, E., Overney, J., Rogers, B. D. & Parlange, M. B. 2009 The effects of building representation and clustering in large-eddy simulations of flows in urban canopies. Boundary-Layer Meteorol. 132 (3), 415436.
Bou-Zeid, E., Parlange, M. B. & Meneveau, C. 2007 On the parameterization of surface roughness at regional scales. J. Atmos. Sci. 64 (1), 216227.
Changnon, S. A. 1979 Rainfall changes in summer caused by St. Louis. Science 205 (4404), 402404.
Deardorff, J. W. 1970 Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. J. Atmos. Sci. 27 (8), 12111213.
De Foy, B., Varela, J. R., Molina, L. T. & Molina, M. J. 2006 Rapid ventilation of the Mexico City basin and regional fate of the urban plume. Atmos. Chem. Phys. 6 (8), 23212335.
Delage, Y. & Taylor, P. A. 1970 Numerical studies of heat island circulations. Boundary-Layer Meteorol. 1 (2), 201226.
Fan, Y., Li, Y., Bejan, A., Wang, Y. & Yang, X. 2017 Horizontal extent of the urban heat dome flow. Sci. Rep. 7 (1), 110.
Fan, Y., Li, Y., Wang, X. & Catalano, F. 2016 A new convective velocity scale for studying diurnal urban heat island circulation. J. Appl. Meteorol. Clim. 55 (10), 21512164.
Fan, Y., Li, Y. & Yin, S. 2018 Non-uniform ground-level wind patterns in a heat dome over a uniformly heated non-circular city. Intl J. Heat Mass Transfer 124, 233246.
Hadfield, M. G., Cotton, W. R. & Pielke, R. A. 1991 Large-eddy simulations of thermally forced circulations in the convective boundary layer. Part I: a small-scale circulation with zero wind. Boundary-Layer Meteorol. 57 (1–2), 79114.
Hataya, N., Mochida, A., Iwata, T., Tabata, Y., Yoshino, H. & Tominaga, Y. 2006 Development of the simulation method for thermal environment and pollutant diffusion in street canyons with subgrid scale obstacles. In Proceedings of the Fourth International Symposium on Computational Wind Engineering (CWE2006), Yokohama, Japan, pp. 553556.
Huang, J. & Bou-Zeid, E. 2013 Turbulence and vertical fluxes in the stable atmospheric boundary layer. Part I: a large-eddy simulation study. J. Atmos. Sci. 70 (6), 15131527.
Kimura, R. 1976 Effects of general flows on a heat island convection. J. Met. Soc. Japan Ser. II 54 (5), 308320.
Klein, P. M. 2012 Metropolitan effects on atmospheric patterns: important scales. In Metropolitan Sustainability, pp. 173204. Elsevier.
Klemp, J. B. & Lilly, D. K. 1978 Numerical simulation of hydrostatic mountain waves. J. Atmos. Sci. 35 (1), 78107.
Kurbatskii, A. F. & Kurbatskaya, L. I. 2016 Turbulent circulation above the surface heat source in stably stratified atmosphere. AIP Conf. Proc. 1770, 030034.
Li, D. 2016 Revisiting the subgrid-scale Prandtl number for large-eddy simulation. J. Fluid Mech. 802, R2.
Li, Q. & Bou-Zeid, E. 2019 Contrasts between momentum and scalar transport over very rough surfaces. J. Fluid Mech. 880, 3258.
Li, Q., Bou-Zeid, E. & Anderson, W. 2016a The impact and treatment of the Gibbs phenomenon in immersed boundary method simulations of momentum and scalar transport. J. Comput. Phys. 310, 237251.
Li, Q., Bou-Zeid, E., Anderson, W., Grimmond, S. & Hultmark, M. 2016b Quality and reliability of LES of convective scalar transfer at high Reynolds numbers. Intl J. Heat Mass Transfer 102, 959970.
Llaguno-Munitxa, M. & Bou-Zeid, E. 2018 Shaping buildings to promote street ventilation: a large-eddy simulation study. Urban Climate 26, 7694.
Lloyd, S. P. 1982 Least squares quantization in PCM. IEEE Trans. Inf. Theory 28 (2), 129137.
Lund, T. S., Wu, X. & Squires, K. D. 1998 Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140 (2), 233258.
MathWorks2019. MATLAB kmeans function. Retrieved January 25, 2020, from https://mathworks.com/help/stats/kmeans.html.
Mochida, A., Tabata, Y., Iwata, T. & Yoshino, H. 2008 Examining tree canopy models for CFD prediction of wind environment at pedestrian level. J. Wind Engng Ind. Aerodyn. 96 (10–11), 16671677.
Monin, A. S. & Obukhov, A. M. 1954 Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR 24 (151), 163187.
National Center for Atmospheric Research2019 Computational and Information Systems Laboratory. Cheyenne: HPE/SGI ICE XA System, University Community Computing, Boulder, CO; doi:10.5065/D6RX99HX.
Niino, H., Mori, A., Satomura, T. & Akiba, S. 2006 Flow regimes of nonlinear heat island circulation. J. Atmos. Sci. 63 (5), 15381547.
Oke, T. R. 1982 The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 108 (455), 124.
Peskin, C. S. 2002 The immersed boundary method. Acta Numerica 11 (2002), 479517.
Petukhov, B. S. & Polyakov, A. F. 1988 Heat Transfer in Turbulent Mixed Convection, 1st Edn, p. 216. Hemisphere.
Ryu, Y. H., Baik, J. J. & Han, J. Y. 2013 Daytime urban breeze circulation and its interaction with convective cells. Q. J. R. Meteorol. Soc. 139 (671), 401413.
Sawai, T. 1978 Formation of the urban air mass and the associated local circulation. J Met. Soc. Japan Ser. II 56 (3), 159174.
Shah, S. & Bou-Zeid, E. 2014 Very-large-scale motions in the atmospheric boundary layer educed by snapshot proper orthogonal decomposition. Boundary-Layer Meteorol. 153 (3), 355387.
Shariat, M., Akbarinia, A., Nezhad, A. H. & Laur, R. 2011 Numerical study of two phase laminar mixed convection nanofluid in elliptic ducts. Appl. Therm. Engng 31 (14-15), 2348.
Shepherd, J. M. 2005 A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interactions 9 (12), 127.
Spalart, P. R. 1988 Direct simulation of a turbulent boundary layer up to Re 𝜃 = 1410. J. Fluid Mech. 187 (December 1986), 6198.
Tseng, Y.-H., Meneveau, C. & Parlange, M. B. 2006 Modeling flow around bluff bodies and predicting urban dispersion using large eddy simulation. Environ. Sci. Technol. 40 (8), 26532662.
Venko, S., Vidal De Ventós, D., Arkar, C. & Medved, S. 2014 An experimental study of natural and mixed convection over cooled vertical room wall. Energy Build. 68 (PARTA), 387395.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Plume or bubble? Mixed-convection flow regimes and city-scale circulations

  • Hamidreza Omidvar (a1), Elie Bou-Zeid (a1), Qi Li (a2), Juan-Pedro Mellado (a3) and Petra Klein (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.