Skip to main content Accessibility help
×
Home

A perturbation approach to understanding the effects of turbulence on frontogenesis

  • Abigail S. Bodner (a1), Baylor Fox-Kemper (a1), Luke P. Van Roekel (a2), James C. McWilliams (a3) and Peter P. Sullivan (a4)...

Abstract

Ocean fronts are an important submesoscale feature, yet frontogenesis theory often neglects turbulence – even parameterized turbulence – leaving theory lacking in comparison with observations and models. A perturbation analysis is used to include the effects of eddy viscosity and diffusivity as a first-order correction to existing strain-induced inviscid, adiabatic frontogenesis theory. A modified solution is obtained by using potential vorticity and surface conditions to quantify turbulent fluxes. It is found that horizontal viscosity and diffusivity tend to be readily frontolytic – reducing frontal tendency to negative values under weakly non-conservative perturbations and opposing or reversing front sharpening, whereas vertical viscosity and diffusivity tend to only weaken frontogenesis by slowing the rate of sharpening of the front even under strong perturbations. During late frontogenesis, vertical diffusivity enhances the rate of frontogenesis, although perturbation theory may be inaccurate at this stage. Surface quasi-geostrophic theory – neglecting all injected interior potential vorticity – is able to describe the first-order correction to the along-front velocity and ageostrophic overturning circulation in most cases. Furthermore, local conditions near the front maximum are sufficient to reconstruct the modified solution of both these fields.

Copyright

Corresponding author

Email address for correspondence: abigail_bodner@brown.edu

References

Hide All
Bachman, S. D., Fox-Kemper, B. & Bryan, F. O. 2015 A tracer-based inversion method for diagnosing eddy-induced diffusivity and advection. Ocean Model. 86, 114.
Bachman, S. D., Fox-Kemper, B., Taylor, J. R. & Thomas, L. N. 2017 Parameterization of frontal symmetric instabilities. Part I. Theory for resolved fronts. Ocean Model. 109, 7295.
Barcilon, V. 1998 On the barotropic ocean with bottom friction. J. Mar. Res. 56 (4), 731771.
Barkan, R., Molemaker, J. M., Srinivasan, K., McWilliams, J. C. & D’Asaro, E. A. 2019 The role of horizontal divergence in submesoscale frontogenesis. J. Phys. Oceanogr 49 (6), 15931618.
Bender, C. M. & Orszag, S. A. 2013 Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory. Springer Science & Business Media.
Benthuysen, J. & Thomas, L. N. 2012 Friction and diapycnal mixing at a slope: boundary control of potential vorticity. J. Phys. Oceanogr. 42 (9), 15091523.
Blumen, W. 1978 Uniform potential vorticity flow. Part I. Theory of wave interactions and two-dimensional turbulence. J. Atmos. Sci. 35 (5), 774783.
Bond, N. A. & Fleagle, R. G. 1985 Structure of a cold front over the ocean. Q. J. R. Meteorol. Soc. 111 (469), 739759.
Boutle, I. A., Belcher, S. E. & Plant, R. S. 2015 Friction in mid-latitude cyclones: an Ekman-PV mechanism. Atmos. Sci. Lett. 16 (2), 103109.
Bretherton, F. P. 1966 Critical layer instability in baroclinic flows. Q. J. R. Meteorol. Soc. 92 (393), 325334.
Callies, J., Flierl, G., Ferrari, R. & Fox-Kemper, B. 2016 The role of mixed-layer instabilities in submesoscale turbulence. J. Fluid Mech. 788, 541.
Capet, X., Klein, P., Hua, B. L., Lapeyre, G. & McWilliams, J. C. 2008a Surface kinetic energy transfer in surface quasi-geostrophic flows. J. Fluid Mech. 604, 165174.
Capet, X., McWilliams, J. C., Molemaker, J. M. & Shchepetkin, A. F. 2008b Mesoscale to submesoscale transition in the California current system. Part I. Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr. 38 (1), 2943.
Capet, X., Roullet, G., Klein, P. & Maze, G. 2016 Intensification of upper-ocean submesoscale turbulence through Charney baroclinic instability. J. Phys. Oceanogr. 46 (11), 33653384.
Charney, J. G. 1971 Geostrophic turbulence. J. Atmos. Sci. 28 (6), 10871095.
Chavanne, C. P. & Klein, P. 2016 Quasigeostrophic diagnosis of mixed layer dynamics embedded in a mesoscale turbulent field. J. Phys. Oceanogr. 46 (1), 275287.
Cooper, I. M., Thorpe, A. J. & Bishop, C. H. 1992 The role of diffusive effects on potential vorticity in fronts. Q. J. R. Meteorol. Soc. 118 (506), 629647.
Crowe, M. N. & Taylor, J. R. 2018 The evolution of a front in turbulent thermal wind balance. Part 1. Theory. J. Fluid Mech. 850, 179211.
Dijkstra, H. A. & Molemaker, J. M. 1997 Symmetry breaking and overturning oscillations in thermohaline-driven flows. J. Fluid Mech. 331, 169198.
Eady, E. T. 1949 Long waves and cyclone waves. Tellus 1 (3), 3352.
Ferrari, R. & Wunsch, C. 2009 Ocean circulation kinetic energy: reservoirs, sources, and sinks. Annu. Rev. Fluid Mech. 41, 253282.
Fox-Kemper, B., Danabasoglu, G., Ferrari, R., Griffies, S. M., Hallberg, R. W., Holland, M. M., Maltrud, M. E., Peacock, S. & Samuels, B. L. 2011 Parameterization of mixed layer eddies. Part III. Implementation and impact in global ocean climate simulations. Ocean Model. 39, 6178.
Fox-Kemper, B. & Ferrari, R. 2009 An eddifying Parsons model. J. Phys. Oceanogr. 39 (12), 32163227.
Fox-Kemper, B., Ferrari, R. & Hallberg, R. W. 2008 Parameterization of mixed layer eddies. Part I. Theory and diagnosis. J. Phys. Oceanogr. 38 (6), 11451165.
Gent, P. R., McWilliams, J. C. & Snyder, C. 1994 Scaling analysis of curved fronts. Validity of the balance equations and semigeostrophy. J. Atmos. Sci. 51 (1), 160163.
Gill, A. E. 1982 Atmosphere-Ocean Dynamics (International Geophysics Series). Academic Press.
Griffies, S. M. 1998 The Gent–McWilliams skew flux. J. Phys. Oceanogr. 28 (5), 831841.
Håkansson, M. 2002 A two-dimensional numerical study of effects of vertical diffusion in frontal zones. Q. J. R. Meteorol. Soc. 128 (585), 24392467.
Hamlington, P. E., Van Roekel, L. P., Fox-Kemper, B., Julien, K. & Chini, G. P. 2014 Langmuir–submesoscale interactions: descriptive analysis of multiscale frontal spindown simulations. J. Phys. Oceanogr. 44 (9), 22492272.
Harnik, N. & Heifetz, E. 2007 Relating overreflection and wave geometry to the counterpropagating Rossby wave perspective: toward a deeper mechanistic understanding of shear instability. J. Atmos. Sci. 64 (7), 22382261.
Haynes, P. H. & McIntyre, M. E. 1987 On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci. 44 (5), 828841.
Hoskins, B. J. 1975 The geostrophic momentum approximation and the semi-geostrophic equations. J. Atmos. Sci. 32 (2), 233242.
Hoskins, B. J. 1982 The mathematical theory of frontogenesis. Annu. Rev. Fluid Mech. 14 (1), 131151.
Hoskins, B. J. 1991 Towards a PV-𝜃 view of the general circulation. Tellus 43 (4), 2736.
Hoskins, B. J. & Bretherton, F. P. 1972 Atmospheric frontogenesis models: mathematical formulation and solution. J. Atmos. Sci. 29 (1), 1137.
Hoskins, B. J., McIntyre, M. E. & Robertson, A. W. 1985 On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteorol. Soc. 111 (470), 877946.
Klein, P., Lapeyre, G., Roullet, G., Le Gentil, S. & Sasaki, H. 2011 Ocean turbulence at meso and submesoscales: connection between surface and interior dynamics. Geophys. Astrophys. Fluid Dyn. 105 (4–5), 421437.
Kurgansky, M. V. & Pisnichenko, I. A. 2000 Modified ertels potential vorticity as a climate variable. J. Atmos. Sci. 57 (6), 822835.
LaCasce, J. H. & Mahadevan, A. 2006 Estimating subsurface horizontal and vertical velocities from sea-surface temperature. J. Mar. Res. 64 (5), 695721.
LaCasce, J. H. & Wang, J. 2015 Estimating subsurface velocities from surface fields with idealized stratification. J. Phys. Oceanogr. 45 (9), 24242435.
Lapeyre, G. & Klein, P. 2006 Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory. J. Phys. Oceanogr. 36 (2), 165176.
Lapeyre, G., Klein, P. & Hua, B. L. 2006 Oceanic restratification forced by surface frontogenesis. J. Phys. Oceanogr. 36 (8), 15771590.
Large, W. G., McWilliams, J. C. & Doney, S. C. 1994 Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 32 (4), 363403.
Li, Q., Reichl, B. G., Fox-Kemper, B., Adcroft, A. J., Belcher, S., Danabasoglu, G., Grant, A., Griffies, S. M., Hallberg, R. W., Hara, T. et al. 2019 Comparing ocean boundary vertical mixing schemes including Langmuir turbulence. J. Adv. Model. Earth Syst. (JAMES) (in press).
Mahadevan, A. 2016 The impact of submesoscale physics on primary productivity of plankton. Annu. Rev. Mar. Sci. 8, 161184.
Mahadevan, A. & Archer, D. 2000 Modeling the impact of fronts and mesoscale circulation on the nutrient supply and biogeochemistry of the upper ocean. J. Geophys. Res. 105 (C1), 12091225.
Marshall, J. C. & Nurser, A. G. 1992 Fluid dynamics of oceanic thermocline ventilation. J. Phys. Oceanogr. 22 (6), 583595.
McWilliams, J. C. 2016 Submesoscale currents in the ocean. Proc. R. Soc. A 472, 20160117.
McWilliams, J. C. 2017 Submesoscale surface fronts and filaments: secondary circulation, buoyancy flux, and frontogenesis. J. Fluid Mech. 823, 391432.
McWilliams, J. C., Gula, J., Molemaker, J. M., Renault, L. & Shchepetkin, A. F. 2015 Filament frontogenesis by boundary layer turbulence. J. Phys. Oceanogr. 45 (8), 19882005.
McWilliams, J. C., Molemaker, M. & Olafsdottir, E. 2009 Linear fluctuation growth during frontogenesis. J. Phys. Oceanogr. 39 (12), 31113129.
McWilliams, J. C., Sullivan, P. P. & Moeng, C.-H. 1997 Langmuir turbulence in the ocean. J. Fluid Mech. 334, 130.
Moeng, C.-H. 1984 A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci. 41 (13), 20522062.
Molemaker, J. M., McWilliams, J. C. & Capet, X. 2010 Balanced and unbalanced routes to dissipation in an equilibrated Eady flow. J. Fluid Mech. 654, 3563.
Nagai, T., Tandon, A. & Rudnick, D. L. 2006 Two-dimensional ageostrophic secondary circulation at ocean fronts due to vertical mixing and large-scale deformation. J. Geophys. Res. 111, C09038.
Nakamura, N. 1994 Nonlinear equilibration of two-dimensional Eady waves: simulations with viscous geostrophic momentum equations. J. Atmos. Sci. 51 (7), 10231035.
Nakamura, N. & Held, I. M. 1989 Nonlinear equilibration of two-dimensional Eady waves. J. Atmos. Sci. 46 (19), 30553064.
Olita, A., Capet, A., Claret, M., Mahadevan, A., Poulain, P. M., Ribotti, A., Ruiz, S., Tintoré, J., Tovar-Sánchez, A. & Pascual, A. 2017 Frontal dynamics boost primary production in the summer stratified Mediterranean sea. Ocean Dyn. 67 (6), 767782.
Parsons, A. T. 1969 A two-layer model of Gulf Stream separation. J. Fluid Mech. 39 (3), 511528.
Pearson, B. & Fox-Kemper, B. 2018 Log-normal turbulence dissipation in global ocean models. Phys. Rev. Lett. 120 (9), 094501.
Pedlosky, J. 1982 Geophysical Fluid Mechanics. Springer.
Pham, H. T. & Sarkar, S. 2018 Ageostrophic secondary circulation at a submesoscale front and the formation of gravity currents. J. Phys. Oceanogr. 48 (10), 25072529.
Pollard, R. T. & Regier, L. A. 1992 Vorticity and vertical circulation at an ocean front. J. Phys. Oceanogr. 22 (6), 609625.
Renault, L., McWilliams, J. C. & Gula, J. 2018 Dampening of submesoscale currents by air–sea stress coupling in the californian upwelling system. Sci. Rep. 8 (1), 13388.
Rhines, P. B. 1986 Vorticity dynamics of the oceanic general circulation. Annu. Rev. Fluid Mech. 18 (1), 433497.
Rotunno, R., Skamarock, W. C. & Snyder, C. 1994 An analysis of frontogenesis in numerical simulations of baroclinic waves. J. Atmos. Sci. 51 (23), 33733398.
Salmon, R. 1998 Lectures on Geophysical Fluid Dynamics. Oxford University Press.
Shakespeare, C. J. & Taylor, J. R. 2013 A generalized mathematical model of geostrophic adjustment and frontogenesis: uniform potential vorticity. J. Fluid Mech. 736, 366413.
Siedler, G., Griffies, S. M., Gould, J. & Church, J. 2013 Ocean Circulation and Climate: A 21st Century Perspective. Academic Press.
Smith, K. M., Hamlington, P. E. & Fox-Kemper, B. 2016 Effects of submesoscale turbulence on ocean tracers. J. Geophys. Res. 121 (1), 908933.
Stamper, M. A., Taylor, J. R. & Fox-Kemper, B. 2018 The growth and saturation of submesoscale instabilities in the presence of a barotropic jet. J. Phys. Oceanogr 48 (11), 27792797.
Sullivan, P. P. & McWilliams, J. C. 2018 Frontogenesis and frontal arrest of a dense filament in the oceanic surface boundary layer. J. Fluid Mech. 837, 341380.
Suzuki, N., Fox-Kemper, B., Hamlington, P. E. & Van Roekel, L. P. 2016 Surface waves affect frontogenesis. J. Geophys. Res. 121 (5), 35973624; Gulf Oil Spill special section.
Taylor, J. R. & Ferrari, R. 2011 Ocean fronts trigger high latitude phytoplankton blooms. Geophys. Res. Lett. 38, L23601.
Thomas, L. N. 2005 Destruction of potential vorticity by winds. J. Phys. Oceanogr. 35 (12), 24572466.
Thomas, L. N. & Ferrari, R. 2008 Friction, frontogenesis, and the stratification of the surface mixed layer. J. Phys. Oceanogr. 38 (11), 25012518.
Thompson, L. 2000 Ekman layers and two-dimensional frontogenesis in the upper ocean. J. Geophys. Res. 105 (C3), 64376451.
Twigg, R. D. & Bannon, P. R. 1998 Frontal equilibration by frictional processes. J. Atmos. Sci. 55 (6), 10841087.
Wenegrat, J. O., Thomas, L. N., Gula, J. & McWilliams, J. C. 2018 Effects of the submesoscale on the potential vorticity budget of ocean mode waters. J. Phys. Oceanogr. 48 (9), 21412165.
Xu, Q., Gu, W. & Gao, J. 1998 Baroclinic Eady wave and fronts. Part I. Viscous semigeostrophy and the impact of boundary condition. J. Atmos. Sci. 55 (24), 35983615.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

A perturbation approach to understanding the effects of turbulence on frontogenesis

  • Abigail S. Bodner (a1), Baylor Fox-Kemper (a1), Luke P. Van Roekel (a2), James C. McWilliams (a3) and Peter P. Sullivan (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed